Advertisement

Chiral nematic assemblies of silver nanoparticles in cellulose nanocrystal membrane with tunable optical properties

  • Liu Liu
  • Lijun Wang
  • Sha Luo
  • Yan QingEmail author
  • Ning Yan
  • Yiqiang WuEmail author
Polymers
  • 30 Downloads

Abstract

Cellulose nanocrystals (CNCs) possessing chiral nematic structures have been developed as liquid crystal templates for optical materials and devices. These templates provide materials with advanced structural and optical properties, leading to numerous promising discoveries of new functional materials. In this work, the chiral nematic CNC/silver nanoparticles (CNC/AgNPs) composite membranes were prepared and displayed striking iridescent colors. The addition of AgNPs strengthened the chiral structure of CNC-based composites by adjusting the pitch of the chiral nematic structure. As the AgNPs content decreased from 8 to 2 wt%, a redshift of the reflection wavelength was observed from 475 to 773 nm, and the distance between the two adjacent layers of the membrane increased from 155 to 254 nm, according to a fitted linear function. Therefore, this composite membrane exhibited excellent chiral optical properties, and the chiral reflectance could be tuned accurately by regulating the content ratio of CNCs to AgNPs. New insights into designing advanced functional optics were provided, herein to show their potential applications, such as in smart windows and anti-counterfeit labels.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31500476, 31530009), the Young Elite Scientists Sponsorship Program by CAST (2016QNRC001), the Science and Technology Project of Hunan Province (2018RS3092, 2016TP1013 and 2018WK4028) and the Outstanding Innovative Youth Training Program of Changsha (KQ1707019).

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

References

  1. 1.
    Wang W, Dong X, Nan J, Jin W, Hu Z, Chen Y, Jiang J (2012) A homochiral metal-organic framework membrane for enantioselective separation. Chem Commun 48(56):7022–7024CrossRefGoogle Scholar
  2. 2.
    Shuang J, Chekini M, Qu ZB, Wang Y, Yeltik A, Liu Y, Kotlyar A, Zhang T, Li B, Demir HV (2017) Chiral ceramic nanoparticles and peptide catalysis. J Am Chem Soc 139(39):13701–13712CrossRefGoogle Scholar
  3. 3.
    James TD, Sandanayake KRAS, Shinkai S (1995) Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374(6520):345–347CrossRefGoogle Scholar
  4. 4.
    Yao K, Meng Q, Bulone V, Zhou Q (2017) Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv Mater.  https://doi.org/10.1002/adma.201701323 Google Scholar
  5. 5.
    Lin W, Hong W, Sun L, Yu D, Yu D, Chen X (2017) bioinspired mesoporous chiral nematic graphitic carbon nitride for ultrahigh photocatalytic activity with polarized light modulations. Chemsuschem 11(1):114–119CrossRefGoogle Scholar
  6. 6.
    Giese M, Blusch LK, Khan MK, Maclachlan MJ (2015) Functional materials from cellulose-derived liquid-crystal templates. Angew Chem 54(10):2888–2910CrossRefGoogle Scholar
  7. 7.
    Tian C, Yi J, Wu Y, Wu Q, Qing Y, Wang L (2016) Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydr Polym 136:485–492CrossRefGoogle Scholar
  8. 8.
    Shopsowitz KE, Qi H, Hamad WY, Maclachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425CrossRefGoogle Scholar
  9. 9.
    Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402Google Scholar
  10. 10.
    Stroobants A, Lekkerkerker HNW, Odijk T (1986) Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rodlike polyelectrolytes. Macromolecules 19(8):272–276CrossRefGoogle Scholar
  11. 11.
    Beck S, Bouchard J, Chauve G, Berry R (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20(3):1401–1411CrossRefGoogle Scholar
  12. 12.
    He YD, Zhang ZL, Xue J, Wang XH, Song F, Wang XL, Zhu LL, Wang YZ (2018) Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism. ACS Appl Mater Interfaces 10(6):5805–5811CrossRefGoogle Scholar
  13. 13.
    Chu G, Wang X, Chen T, Gao J, Gai F, Wang Y, Xu Y (2015) Optically tunable chiral plasmonic guest-host cellulose films weaved with long-range ordered silver nanowires. ACS Appl Mater Interfaces 7(22):11863–11870CrossRefGoogle Scholar
  14. 14.
    Giese M, Blusch LK, Khan MK, Hamad WY, Maclachlan MJ (2015) Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angew Chem Int Ed 126(34):8880–8884CrossRefGoogle Scholar
  15. 15.
    Ball Amp P, Garwin L (1992) Science at the atomic scale. Nature 355(6363):761–764CrossRefGoogle Scholar
  16. 16.
    Linderoth S, Mørup S (1990) Chemically prepared amorphous Fe-B particles: Influence of pH on the composition. J Appl Phys 67(9):4472–4474CrossRefGoogle Scholar
  17. 17.
    Bhatia B, Sholl DS (2005) Enantiospecific chemisorption of small molecules on intrinsically chiral Cu surfaces. Angew Chem 44(47):7761–7764CrossRefGoogle Scholar
  18. 18.
    Fraile JM, García JI, Herrerías CI, Mayoral JA, Pires E (2009) Enantioselective catalysis with chiral complexes immobilized on nanostructured supports. Chem Soc Rev 40(25):695–706CrossRefGoogle Scholar
  19. 19.
    Valev VK, Baumberg JJ, Sibilia C, Verbiest T (2013) Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv Mater 25(18):2509–2509CrossRefGoogle Scholar
  20. 20.
    Rodrigues SP, Lan S, Kang L, Cui Y, Cai W (2014) Nonlinear imaging and spectroscopy of chiral metamaterials. Adv Mater 26(35):6157–6162CrossRefGoogle Scholar
  21. 21.
    Li Z, Zhu Z, Liu W, Zhou Y, Han B, Gao Y, Tang Z (2012) Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc 134(7):3322–3325CrossRefGoogle Scholar
  22. 22.
    Liang Z, Liang W, Shao W, Huang J, Guan T, Wen P, Cao G, Jiang L (2018) Fabrication of tunable aluminum nanodisk arrays via a self-assembly nanoparticles template method and their application in performance enhancement in organic photovoltaics. J Mater Chem A 6(8):3649–3658CrossRefGoogle Scholar
  23. 23.
    Qi H, Shopsowitz KE, Hamad WY, Maclachlan MJ (2011) Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J Am Chem Soc 133(11):3728–3731CrossRefGoogle Scholar
  24. 24.
    George J, Thomas KG (2010) Surface plasmon coupled circular dichroism of au nanoparticles on peptide nanotubes. J Am Chem Soc 132(8):2502–2503CrossRefGoogle Scholar
  25. 25.
    Lizundia E, Goikuria U, Vilas JL, Cristofaro F, Bruni G, Fortunati E, Armentano I, Visai L, Torre L (2018) Metal nanoparticles embedded in cellulose nanocrystal based films: material properties and post-use analysis. Biomacromol 19(7):2618–2628CrossRefGoogle Scholar
  26. 26.
    Querejetafernández A, Chauve G, Methot M, Bouchard J, Kumacheva E (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136(12):4788–4793CrossRefGoogle Scholar
  27. 27.
    Liu Q, Campbell MG, Evans JS, Smalyukh II (2014) Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals. Adv Mater 26(42):7178–7184CrossRefGoogle Scholar
  28. 28.
    Mitov M, Portet C, Bourgerette C, Snoeck E, Verelst M (2002) Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal. Nat Mater 1(4):229–231CrossRefGoogle Scholar
  29. 29.
    Huang J, Kim F, Tao AR, Connor S, Yang P (2005) Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater 4(12):896–900CrossRefGoogle Scholar
  30. 30.
    Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745CrossRefGoogle Scholar
  31. 31.
    Jiu J, Araki T, Wang J, Nogi M, Sugahara T, Nagao S, Koga H, Suganuma K, Nakazawa E, Hara M (2014) Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A 2(18):6326–6330CrossRefGoogle Scholar
  32. 32.
    Lagerwall JPF, Schütz C, Salajkova M, Noh JH, Ji HP, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Material.  https://doi.org/10.1038/am.2013.69 Google Scholar
  33. 33.
    Chen Q, Liu P, Nan F, Zhou L, Zhang J (2014) Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. Biomacromol 15(11):4343–4350CrossRefGoogle Scholar
  34. 34.
    Querejetafernández A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G, Bouchard J, Helmy AS, Kumacheva E (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9(10):10377–10385CrossRefGoogle Scholar
  35. 35.
    Shopsowitz KE, Kelly JA, Hamad WY, Maclachlan MJ (2014) Biopolymer templated glass with a twist: controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystals. Adv Funct Mater 24(3):327–338CrossRefGoogle Scholar
  36. 36.
    Mori T, Sharma A, Hegmann T (2016) Significant enhancement of the chiral correlation lengths in nematic liquid crystals by gold nanoparticle surfaces featuring axially chiral binaphthyl ligands. ACS Nano 10(1):1552–1564CrossRefGoogle Scholar
  37. 37.
    Small WR, Walton CD, Loos J, in het Panhuis M (2006) Carbon nanotube network formation from evaporating sessile drops. J Phys Chem B 110(26):13029–13036CrossRefGoogle Scholar
  38. 38.
    Lazarus V, Pauchard L (2011) From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation. Soft Matter 7(6):2552–2559CrossRefGoogle Scholar
  39. 39.
    Ng TT (2014) Edge effect in pressurized membranes. J Eng Mech 128(128):40–46Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyCentral South University of Forestry and TechnologyChangshaPeople’s Republic of China
  2. 2.Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo ResourcesCentral South University of Forestry and TechnologyChangshaPeople’s Republic of China
  3. 3.Faculty of ForestryUniversity of TorontoTorontoCanada

Personalised recommendations