Journal of Materials Science

, Volume 54, Issue 8, pp 6073–6087 | Cite as

Phase development of silicon oxycarbide nanocomposites during flash pyrolysis

  • Lixia Wang
  • Kathy LuEmail author


This work is focused on phase development of silicon oxycarbide (SiOC) nanocomposites during flash pyrolysis. Three important variables evaluated are applied electric field, current limit, and pyrolysis temperature. They significantly facilitate the microstructure evolution of SiOC and cause the formation of more ordered carbon and SiC phases at > 640 °C lower temperature than the typical pyrolysis process. With the increase in the applied electric field, pyrolysis temperature, and current density, the mass loss is higher, the SiC formation and carbon precipitation are more extensive, and the carbon phase is more ordered. The resulting SiOC samples are stable up to 742 °C in air. The fundamental cause is due to the drastically accelerated nucleation rate for both the C and SiC phases from the applied electrical field, through the mechanisms of Joule heating and electromigration. This work provides an accelerated route to synthesize high-temperature SiOC nanocomposites.



We acknowledge the financial support from National Science Foundation under grant number CMMI-1634325.

Supplementary material

10853_2019_3315_MOESM1_ESM.docx (129 kb)
Supplementary material 1 (DOCX 129 kb)


  1. 1.
    Li J, Lu K (2015) Highly porous SiOC bulk ceramics with water vapor assisted pyrolysis. J Am Ceram Soc 98(8):2357–2365CrossRefGoogle Scholar
  2. 2.
    Soraru GD, Dallapiccola E, Andrea GD (1996) mechanical characterization of sol–gel-derived silicon oxycarbide glasses. J Am Ceram Soc 79(8):2074–2080CrossRefGoogle Scholar
  3. 3.
    Esfehanian M, Oberacker R, Fett T, Hoffmann MJ (2008) Development of dense filler-free polymer-derived SiOC ceramics by field-assisted sintering. J Am Ceram Soc 91(11):3803–3805CrossRefGoogle Scholar
  4. 4.
    Clark MD, Walker LS, Hadjiev VG, Khabashesku V, Corral EL, Krishnamoorti R (2011) Fast sol–gel preparation of silicon carbide–silicon oxycarbide nanocomposites. J Am Ceram Soc 94(12):4444–4452CrossRefGoogle Scholar
  5. 5.
    Du B, Hong CQ, Zhang XH, Wang JZ, Qu Q (2018) Preparation and mechanical behaviors of SiOC-modified carbon-bonded carbon fiber composite with in situ growth of three-dimensional SiC nanowires. J Eur Ceram Soc 38(5):2272–2278CrossRefGoogle Scholar
  6. 6.
    Lu K, Erb D, Liu MY (2016) Thermal stability and electrical conductivity of carbon-enriched silicon oxycarbide. J Mater Chem C 4(9):1829–1837CrossRefGoogle Scholar
  7. 7.
    Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7):1805–1837Google Scholar
  8. 8.
    Zhu SM, Ding SQ, Xi HA, Wang RD (2005) Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Mater Lett 59(5):595–597CrossRefGoogle Scholar
  9. 9.
    Kawamura F, Yamane H, Yamada T, Yin S, Sato T (2008) Low-temperature fabrication of porous beta-SiC ceramics in sodium vapor. J Am Ceram Soc 91(1):51–55CrossRefGoogle Scholar
  10. 10.
    Kim KJ, Lee S, Lee JH, Roh MH, Lim KY, Kim YW (2009) Structural and optical characteristics of crystalline silicon carbide nanoparticles synthesized by carbothermal reduction. J Am Ceram Soc 92(2):424–428CrossRefGoogle Scholar
  11. 11.
    Yang K, Yang Y, Lin ZM, Li JT, Du JS (2007) Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter. Mater Res Bull 42(9):1625–1632CrossRefGoogle Scholar
  12. 12.
    Brequel H, Parmentier J, Soraru GD, Schiffini L, Enzo S (1999) Study of the phase separation in amorphous silicon oxycarbide glasses under heat treatment. Nanostruct Mater 11(6):721–731CrossRefGoogle Scholar
  13. 13.
    Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90(2):578–583CrossRefGoogle Scholar
  14. 14.
    Saha A, Raj R, Williamson DL (2006) A model for the nanodomains in polymer-derived SiCO. J Am Ceram Soc 89(7):2188–2195Google Scholar
  15. 15.
    Brequel H, Parmentier J, Walter S, Badheka R, Trimmel G, Masse S, Latournerie J, Dempsey P, Turquat C, Desmartin-Chomel A, Le Neindre-Prum L, Jayasooriya UA, Hourlier D, Kleebe HJ, Soraru GD, Enzo S, Babonneau F (2004) Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem Mater 16(13):2585–2598CrossRefGoogle Scholar
  16. 16.
    Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 °C. J Am Ceram Soc 93(11):3556–3559CrossRefGoogle Scholar
  17. 17.
    Raj R (2012) Joule heating during flash-sintering. J Eur Ceram Soc 32(10):2293–2301CrossRefGoogle Scholar
  18. 18.
    Grasso S, Sakka Y, Rendtorff N, Hu CF, Maizza G, Borodianska H, Vasylkiv O (2011) Modeling of the temperature distribution of flash sintered zirconia. J Ceram Soc Jpn 119(1386):144–146CrossRefGoogle Scholar
  19. 19.
    Mazo MA, Palencia C, Nistal A, Rubio F, Rubio J, Oteo JL (2012) Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering. J Eur Ceram Soc 32(12):3369–3378CrossRefGoogle Scholar
  20. 20.
    Sujith R, Srinivasan N, Kumar R (2013) Small-scale deformation of pulsed electric current sintered silicon oxycarbide polymer derived ceramics. Adv Eng Mater 15(11):1040–1045CrossRefGoogle Scholar
  21. 21.
    Wang B, Wolfe DE, Terrones M, Haque MA, Ganguly S, Roy AK (2017) Electro-graphitization and exfoliation of graphene on carbon nanofibers. Carbon 117:201–207CrossRefGoogle Scholar
  22. 22.
    Cologna M, Francis JSC, Raj R (2011) Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc 31(15):2827–2837CrossRefGoogle Scholar
  23. 23.
    Francis JSC, Raj R (2012) Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J Am Ceram Soc 95(1):138–146CrossRefGoogle Scholar
  24. 24.
    Yoshida H, Sakka Y, Yamamoto T, Lebrun JM, Raj R (2014) Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering. J Eur Ceram Soc 34(4):991–1000CrossRefGoogle Scholar
  25. 25.
    Torabi M, Sadrnezhaad SK (2011) Electrochemical evaluation of nanocrystalline Zn-doped tin oxides as anodes for lithium ion microbatteries. J Power Sources 196(1):399–404CrossRefGoogle Scholar
  26. 26.
    Erb D, Lu K (2017) Additive and pyrolysis atmosphere effects on polysiloxane-derived Porous SiOC ceramics. J Eur Ceram Soc 37(15):4547–4557CrossRefGoogle Scholar
  27. 27.
    Lu K (2015) Porous and high surface area silicon oxycarbide-based materials—a review. Mater Sci Eng R 97:23–49CrossRefGoogle Scholar
  28. 28.
    Lu K, Erb D, Liu MY (2016) Phase transformation, oxidation stability, and electrical conductivity of TiO2-polysiloxane derived ceramics. J Mater Sci 51(22):10166–10177. CrossRefGoogle Scholar
  29. 29.
    Brewer CM, Bujalski DR, Parent VE, Su K, Zank GA (1999) Insights into the oxidation chemistry of SiOC ceramics derived from silsesquioxanes. J Sol Gel Sci Technol 14(1):49–68CrossRefGoogle Scholar
  30. 30.
    Naik KS, Sglavo VM, Raj R (2014) Flash sintering as a nucleation phenomenon and a model thereof. J Eur Ceram Soc 34(15):4063–4067CrossRefGoogle Scholar
  31. 31.
    Kleykamp H (1998) Gibbs energy of formation of SiC: a contribution to the thermodynamic stability of the modifications. Ber Bunsen Phys Chem 102(9):1231–1234CrossRefGoogle Scholar
  32. 32.
    Tavakoli AH, Armentrout MM, Narisawa M, Sen S, Navrotsky A (2015) White Si–O–C ceramic: structure and thermodynamic stability. J Am Ceram Soc 98(1):242–246CrossRefGoogle Scholar
  33. 33.
    Pradere C, Batsale JC, Goyhénèche JM, Pailler R, Dilhaire S (2009) Thermal properties of carbon fibers at very high temperature. Carbon 47(3):737–743CrossRefGoogle Scholar
  34. 34.
    Sazali NES, Deraman M, Omar R, Othman MAR, Suleman M, Shamsudin SA, Tajuddin NSM, Hanappi MFYM, Hamdan E, Nor NSM, Basri NH (2016) Preparation and structural characterization of turbostratic-carbon/graphene derived from amylose film. AIP Conf Proc 1784(1):040009CrossRefGoogle Scholar
  35. 35.
    Kay DAR, Taylor J (1960) Activities of silica in the lime + alumina + silica system. Trans Faraday Soc 56(9):1372–1386CrossRefGoogle Scholar
  36. 36.
    Minnear WP (1982) Interfacial energies in the Si/SiC system and the Si + C reaction. J Am Ceram Soc 65(1):C10–C11CrossRefGoogle Scholar
  37. 37.
    Kim T, Lee J, Lee K-H (2016) Full graphitization of amorphous carbon by microwave heating. RSC Adv 6(29):24667–24674CrossRefGoogle Scholar
  38. 38.
    Fisher JC, Hollomon JH, Turnbull D (1948) Nucleation. J Appl Phys 19(8):775–784CrossRefGoogle Scholar
  39. 39.
    Pan JM, Pan JF, Cheng XN, Yan XH, Lu QB, Zhang CH (2014) Synthesis of hierarchical porous silicon oxycarbide ceramics from preceramic polymer and wood biomass composites. J Eur Ceram Soc 34(2):249–256CrossRefGoogle Scholar
  40. 40.
    Roth F, Waleska P, Hess C, Ionescu E, Nicoloso N (2016) UV Raman spectroscopy of segregated carbon in silicon oxycarbides. J Ceram Soc Jpn 124(10):1042–1045CrossRefGoogle Scholar
  41. 41.
    Larouche N, Stansfield BL (2010) Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon 48(3):620–629CrossRefGoogle Scholar
  42. 42.
    Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107CrossRefGoogle Scholar
  43. 43.
    Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1998) Comparative performance of X-ray diffraction and raman microprobe techniques for the study of carbon materials. J Mater Chem 8(12):2875–2879CrossRefGoogle Scholar
  44. 44.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130CrossRefGoogle Scholar
  45. 45.
    Zhang XF, Yan QG, Leng WQ, Li JH, Zhang JL, Cai ZY, Hassan E (2017) Carbon nanostructure of kraft lignin thermally treated at 500 to 1000 °C. Materials 10(8):975CrossRefGoogle Scholar
  46. 46.
    Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM, Son H, Hsieh Y-P, Reina A, Kong J, Terrones M, Dresselhaus MS (2009) Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323(5922):1701–1705CrossRefGoogle Scholar
  47. 47.
    Wang BM, Haque MA, Mag-isa AE, Kim JH, Lee HJ (2015) High temperature and current density induced degradation of multi-layer graphene. Appl Phys Lett 107(16):163103CrossRefGoogle Scholar
  48. 48.
    Huang YF, Deng ZX, Wang WL, Liang CL, She JC, Deng SZ, Xu NS (2015) Field-induced crystalline-to-amorphous phase transformation on the Si nano-apex and the achieving of highly reliable si nano-cathodes. Sci Rep UK 5:10631CrossRefGoogle Scholar
  49. 49.
    de Orio RL, Ceric H, Selberherr S (2010) Physically based models of electromigration: from black’s equation to modern TCAD models. Microelectron Reliab 50(6):775–789CrossRefGoogle Scholar
  50. 50.
    Wadey JD, Markevich A, Robertson A, Warner J, Kirkland A, Besley E (2016) Mechanisms of monovacancy diffusion in graphene. Chem Phys Lett 648:161–165CrossRefGoogle Scholar
  51. 51.
    Tian WC, Li WH, Yu WB, Liu XH (2017) A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines Basel 8(5):1–15Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry, College of Chemistry and Chemical EngineeringBohai UniversityJinzhouChina
  2. 2.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations