Journal of Materials Science

, Volume 54, Issue 6, pp 4831–4841 | Cite as

Moisture-enabled electricity generation from gradient polyoxometalates-modified sponge-like graphene oxide monolith

  • Jia LiuEmail author
  • Yan Qi
  • Dongping Liu
  • Dapeng Dong
  • Dedi Liu
  • Zhenghua Li
Energy materials


Environmental energy harvesting devices hold great prospect for the next generation electronics, which have attracted intensive attentions recently. In this research, a gradient polyoxometalates-modified graphene oxide (g-POMs-GO) with three-dimensional cross-linking inner structure is synthesized by a weak reductant of GO with ethylenediamine and a special soaking treatment in phosphotungstic acid (HPW). Owing to the gradient introduction of HPW, the as-prepared g-POMs-GO is able to provide moisture-enabled current output of 6.2 uA cm−2 with a power density of ≈ 0.7 mW m−2 by harvesting energy from moisture. Moreover, the humidity-to-electric conversion device of g-POMs-GO provides a new, practical method to track the respiratory activity of subjects and can directly use to record and analyze patterns of human breathing.



This project is sponsored by the Fundamental Research Funds for the Central Universities (DC. 201502080403), the National Natural Science Foundation of China (Nos. 11804044, 61771092), and the Natural Science Foundation of Liaoning Province (No. 2015020072).

Supplementary material

10853_2018_3183_MOESM1_ESM.docx (147 kb)
Supplementary material 1 (DOCX 147 kb)


  1. 1.
    Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRefGoogle Scholar
  2. 2.
    Burschka J, Pellet N, Moon SJ, Humphrybaker R, Gao P, Nazeeruddi MK (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319CrossRefGoogle Scholar
  3. 3.
    Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889CrossRefGoogle Scholar
  4. 4.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRefGoogle Scholar
  5. 5.
    Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  6. 6.
    Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246CrossRefGoogle Scholar
  7. 7.
    Yang R, Qin Y, Dai L, Wang ZL (2009) Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol 4:34–39CrossRefGoogle Scholar
  8. 8.
    Wang X, Song J, Liu J, Wang ZL (2007) Direct current nanogenerator driven by ultrasonic wave. Science 316:102–105CrossRefGoogle Scholar
  9. 9.
    Jeong CK, Park KI, Son JH, Hwang GT, Lee SH, Park DY, Lee HE, Lee HK, Byun M, Lee KJ (2014) Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ Sci 7:4035–4043CrossRefGoogle Scholar
  10. 10.
    Zhu G, Pan C, Guo W, Chen CY, Zhou Y, Yu R, Wang ZL (2012) Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett 12:4960–4965CrossRefGoogle Scholar
  11. 11.
    Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang ZL (2013) Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 13:2226–2233CrossRefGoogle Scholar
  12. 12.
    Zhu G, Chen J, Zhang T, Jing Q, Wang Z (2014) Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun 5:3426–3432CrossRefGoogle Scholar
  13. 13.
    Jing Q, Xie Y, Zhu G, Han RP, Wang ZL (2015) Self-powered thin-film motion vector sensor. Nat Commun 6:8031–8037CrossRefGoogle Scholar
  14. 14.
    Jeong CK, Baek KM, Niu S, Nam TW, Hur YH, Park DY, Lee KJ (2014) Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett 14:7031–7038CrossRefGoogle Scholar
  15. 15.
    Ghosh S, Sood AK, Kumar N (2003) Carbon nanotube flow sensors. Science 299:1042–1044CrossRefGoogle Scholar
  16. 16.
    Dhiman P, Yavari F, Mi X, Gullapalli H, Shi YP, Ajayan M, Koratkar N (2011) Harvesting energy from water flow over graphene. Nano Lett 11:3123–3127CrossRefGoogle Scholar
  17. 17.
    Guo W, Cheng C, Wu Y, Jiang Y, Gao J, Li D, Jiang L (2013) Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25:6064–6068CrossRefGoogle Scholar
  18. 18.
    Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W (2014) Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol 9:378–383CrossRefGoogle Scholar
  19. 19.
    Wan S, Li Y, Mu J, Aliev AE, Fang S, Kotov NA, Jiang L, Cheng Q, Baughman RH (2018) Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. PNAS 115:5359–5364CrossRefGoogle Scholar
  20. 20.
    Gong S, Ni H, Jiang L, Cheng Q (2017) Learning from nature: constructing high performance graphene-based nanocomposites. Mater Today 20:210–219CrossRefGoogle Scholar
  21. 21.
    Wan S, Peng J, Jiang L, Cheng Q (2016) Bioinspired graphene-based nanocomposites and their application in flexible energy devices. Adv Mater 28:7862–7898CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Gong S, Zhang Q, Ming P, Wan S, Peng J, Jiang L, Cheng Q (2016) Graphene-based artificial nacre nanocomposites. Chem Soc Rev 45:2378–2395CrossRefGoogle Scholar
  23. 23.
    Gao W, Wu G, Janicke MT, Cullen DA, Mukundan R, Baldwin JK, Brosha EL, Galande C, Ajayan PM, More KL, Dattelbaum AM, Zelenay P (2014) Ozonated graphene oxide film as a proton-exchange membrane. Angew Chem Int Ed 53:3588–3593CrossRefGoogle Scholar
  24. 24.
    Hatakeyama K, Karim MR, Ogata C, Tateishi H, Funatsu A, Taniguchi T, Koinuma M, Hayami S, Matsumoto Y (2014) Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets. Angew Chem Int Ed 53:6997–7000CrossRefGoogle Scholar
  25. 25.
    Karim MR, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, Matsumoto Y, Akutagawa T, Nakamura T, Noro S, Yamada T, Kitagawa H, Hayami S (2013) Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc 135:8097–8100CrossRefGoogle Scholar
  26. 26.
    Gao W, Singh N, Song L, Liu Z, Reddy AL, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan PM (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6:496–500CrossRefGoogle Scholar
  27. 27.
    Liu Y, Liu S, Lai X, Miao J, He D, Li N, Luo F, Shi Z, Liu S (2015) Polyoxometalates-modified sponge-like graphene oxide monolith with high proton-conducting performance. Adv Funct Mater 25:4480–4485CrossRefGoogle Scholar
  28. 28.
    Kim S, Zhou S, Hu Y, Acik M, Chabal YJ, Berger C, de Heer W, Bongiorno A, Riedo E (2012) Room-temperature metastability of multilayer graphene oxide films. Nat Mater 11:544–549CrossRefGoogle Scholar
  29. 29.
    Cheng H, Hu Y, Zhao F, Dong Z, Wang Y, Chen N, Zhang Z, Qu L (2014) Moisture-activated torsional graphene-fiber motor. Adv Mater 26:2909–2913CrossRefGoogle Scholar
  30. 30.
    Zhao F, Cheng H, Zhang Z, Jiang L, Qu L (2015) Direct power generation from a graphene oxide film under moisture. Adv Mater 27:4351–4357CrossRefGoogle Scholar
  31. 31.
    Zhao F, Liang Y, Cheng H, Jiang L, Qu L (2016) Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ Sci 9:912–916CrossRefGoogle Scholar
  32. 32.
    Liu K, Yang P, Li S, Li J, Ding T, Xue G, Chen Q, Feng G, Zhou J (2016) Induced potential in porous carbon films through water vapor absorption. Angew Chem Int Ed 55:8003–8007CrossRefGoogle Scholar
  33. 33.
    Katsoulis DE (1998) A Survey of applications of polyoxometalates. Chem Rev 98:359–387CrossRefGoogle Scholar
  34. 34.
    Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198CrossRefGoogle Scholar
  35. 35.
    Yoon M, Suh K, Natarajan S, Kim K (2013) Proton conduction in metal-organic frameworks and related modularly built porous Solids. Angew Chem Int Ed 52:2688–2700CrossRefGoogle Scholar
  36. 36.
    Liu J, Wang Z, Zhao Y, Cheng H, Hu C, Jiang L, Qu L (2012) Three-dimensional graphene-polypyrrole hybrid electrochemical actuator. Nanoscale 4:7563–7568CrossRefGoogle Scholar
  37. 37.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  38. 38.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene-based materials: graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRefGoogle Scholar
  39. 39.
    Nakamura O, Kodama T, Ogino I, Miyake Y (1979) High-conductivity solid proton conductors: dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals. Chem Lett 8:17–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Materials EngineeringDalian Nationalities UniversityDalianPeople’s Republic of China

Personalised recommendations