Advertisement

Journal of Materials Science

, Volume 54, Issue 6, pp 5136–5148 | Cite as

Development of supramolecular shape-memory polyurethanes based on Cu(II)–pyridine coordination interactions

  • Faxing Zou
  • Heng Chen
  • Shaojun ChenEmail author
  • Haitao Zhuo
Polymers
  • 392 Downloads

Abstract

Shape-memory polymers with supramolecular switch have received increasing attention. This study reports the synthesis and characterization of supramolecular shape-memory polyurethane based on Cu(II)–pyridine coordination, obtained by mixing pyridine containing polyurethane with CuCl2. The results show that there are strong metal–ligand coordination interactions formed between Cu(II) and the pyridine ring in a series of CuCl2-doped polyurethane samples. The Cu(II)–pyridine coordination plays a crucial role in the enhanced physical netpoints for outstanding shape-memory properties. Indeed, the so-synthesized CuCl2-doped polyurethane exhibits not only a rapid tensile shape recovery but also excellent crimp shape recovery. The CuCl2-doped polyurethane containing suitable metal–ligand coordination interactions shows more than 99% shape fixation and more than 95% shape recovery. Our findings promote further applications of shape-memory polymers in multiple engineering fields.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51773120, 51802201), the Natural Science Foundation of Guangdong (Grant Nos. 2016A030313050, 2017A030310045), the Science and Technology Project of Shenzhen City (Grant No. JCYJ20170412105034748) and the Top Talent Launch Scientific Research Projects of Shenzhen (827-000133).

Supplementary material

10853_2018_3179_MOESM1_ESM.docx (995 kb)
Supplementary material 1 (DOCX 995 kb)

References

  1. 1.
    Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057CrossRefGoogle Scholar
  2. 2.
    Lendlein A, Jiang HY, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882CrossRefGoogle Scholar
  3. 3.
    Hu YW, Lu CH, Guo WW et al (2016) A shape memory acrylamide/DNA hydrogel exhibiting switchable dual pH-responsiveness. Adv Funct Mater 25(44):6867–6874CrossRefGoogle Scholar
  4. 4.
    Ban J, Mu L, Yang J, Chen S, Zhuo H (2017) New stimulus-responsive shape-memory polyurethanes capable of UV light-triggered deformation, hydrogen bond-mediated fixation, and thermal-induced recovery. J Mater Chem A 5:14514–14518CrossRefGoogle Scholar
  5. 5.
    Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558CrossRefGoogle Scholar
  6. 6.
    Yan XZ, Wang F, Zheng B, Huang FH (2012) Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 41:6042–6065CrossRefGoogle Scholar
  7. 7.
    Chen S, Yuan H, Chen S et al (2014) Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. J Mater Chem A 2:10169–10181CrossRefGoogle Scholar
  8. 8.
    Lu W, Ma CX, Zhang D et al (2018) Real-time in situ investigation of supramolecular shape memory process by fluorescence switching. J Phys Chem C 122:9499–9506Google Scholar
  9. 9.
    Lu W, Le XX, Zhang JW, Huang YJ, Chen T (2017) Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem Soc Rev 46:1284–1294CrossRefGoogle Scholar
  10. 10.
    Chen SJ, Hu JL, Chen SG, Zhang CL (2011) Study on the structure and morphology of supramolecular shape memory polyurethane containing pyridine moieties. Smart Mater Struct 20:065003.  https://doi.org/10.1088/0964-1726/20/6/065003 CrossRefGoogle Scholar
  11. 11.
    Zhu Y, Hu JL, Liu YJ (2009) Shape memory effect of thermoplastic segmented polyurethanes with self-complementary quadruple hydrogen bonding in soft segments. Eur Phys J E 28:3–10CrossRefGoogle Scholar
  12. 12.
    Xiao LP, Wei M, Zhan MQ et al (2014) Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym Chem 5:2231–2241CrossRefGoogle Scholar
  13. 13.
    Jiang ZC, Xiao YY, Kang Y, Li BJ, Zhang S (2017) Semi-IPNs with moisture-triggered shape memory and self-healing properties. Macromol Rapid Commun 38:1700149.  https://doi.org/10.1002/marc.201700149 CrossRefGoogle Scholar
  14. 14.
    Fan MM, Yu ZJ, Luo HY, Sheng Z, Li BJ (2009) Supramolecular network based on the self-assembly of gamma-cyclodextrin with poly(ethylene glycol) and its shape memory effect. Macromol Rapid Commun 30:897–903CrossRefGoogle Scholar
  15. 15.
    Lehn JM (2010) Dynamers: dynamic molecular and supramolecular polymers. Aust J Chem 63:611–623CrossRefGoogle Scholar
  16. 16.
    Yang LP, Zhang GG, Zheng N, Zhao Q, Xie T (2017) A metallosupramolecular shape-memory polymer with gradient thermal plasticity. Angew Chem Int Ed 56:12599–12602CrossRefGoogle Scholar
  17. 17.
    Odent J, Raquez JM, Dubois P, Giannelis EP (2017) Ultra-stretchable ionic nanocomposites: from dynamic bonding to multi-responsive behavior. J Mater Chem A 5:13357–13363CrossRefGoogle Scholar
  18. 18.
    Zhang TH, Wen ZB, Hui Y et al (2015) Facile fabrication of a well-defined poly(p-dioxanone) dynamic network from metallosupramolecular interactions to obtain an excellent shape-memory effect. Polym Chem 6:4177–4184CrossRefGoogle Scholar
  19. 19.
    Wu Y, Hu JL, Zhang C, Han J, Wang Y, Kumar B (2015) A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer. J Mater Chem A 3:97–100CrossRefGoogle Scholar
  20. 20.
    Wang ZH, Fan WR, Tong R, Lu XL, Xia HS (2014) Thermal-healable and shape memory metallosupramolecular poly(n-butyl acrylate-co-methyl methacrylate) materials. RSC Adv 4:25486–25493CrossRefGoogle Scholar
  21. 21.
    Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874CrossRefGoogle Scholar
  22. 22.
    Michal BT, McKenzie BM, Felder SE, Rowan SJ (2015) Metallo-, thermo-, and photoresponsive shape memory and actuating liquid crystalline elastomers. Macromolecules 48:3239–3246CrossRefGoogle Scholar
  23. 23.
    Du L, Xu ZY, Fan CJ, Xiang G, Yang KK, Wang YZ (2018) A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shape-memory effects anchored by Fe3O4 nanoparticles. Macromolecules 51:705–715CrossRefGoogle Scholar
  24. 24.
    Chen SJ, Mei ZK, Ren HH, Zhuo HT, Liu JH, Ge ZC (2016) Pyridine type zwitterionic polyurethane with both multi-shape memory effect and moisture-sensitive shape memory effect for smart biomedical application. Polym Chem 7:5773–5782CrossRefGoogle Scholar
  25. 25.
    Chen S, Hu J, Yuen C-WM, Chan L (2009) Supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Mater Lett 63:1462–1464CrossRefGoogle Scholar
  26. 26.
    Chen S, Hu J, Zhuo H, Yuen CM, Chan L (2010) Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer 51:240–248CrossRefGoogle Scholar
  27. 27.
    Chen S, Hu J, Yuen C-WM, Chan L (2009) Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50:4424–4428CrossRefGoogle Scholar
  28. 28.
    Zhuo HT, Mei ZK, Chen H, Chen SJ (2018) Chemically-crosslinked zwitterionic polyurethanes with excellent thermally-induced multi-shape memory effect and moisture-induced shape memory effect. Polymer 148:119–126CrossRefGoogle Scholar
  29. 29.
    Wen H, Chen SJ, Ge ZC, Zhuo HT, Ling JL, Liu Q (2017) Development of humidity-responsive self-healing zwitterionic polyurethanes for renewable shape memory applications. RSC Adv 7:31525–31534CrossRefGoogle Scholar
  30. 30.
    Chen S, Hu J, Yuen C-WM, Chan L (2010) Fourier transform infrared study of supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Polym Int 59:529–538CrossRefGoogle Scholar
  31. 31.
    Wang C, Yang L, Chang GJ (2018) Recyclable Cu(II)-coordination crosslinked poly(benzimidazolyl pyridine)s as high-performance polymers. Macromol Rapid Commun.  https://doi.org/10.1002/marc.201700573 Google Scholar
  32. 32.
    Yoshida T (1981) An X-ray photoelectron spectroscopic study of several hydroxy azo metal-complexes. Bull Chem Soc Jpn 54:709–712CrossRefGoogle Scholar
  33. 33.
    Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  2. 2.College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations