Journal of Materials Science

, Volume 54, Issue 7, pp 5187–5223 | Cite as

Highly stretchable sensors for wearable biomedical applications

  • Qinwu Gao
  • Jinjie Zhang
  • Zhenwen Xie
  • Olatunji Omisore
  • Jinyong Zhang
  • Lei WangEmail author
  • Hui LiEmail author


Highly stretchable supersensitive sensors represent a new epoch in the field of intelligent medical devices. Applications include the detection of various stimuli of the human body and environmental monitoring around biological surfaces. To provide more accurate measurement results, stretchable sensors must be tightly attached on the skin surface or to clothing. Consequently, stretchable sensors must fulfill many requirements, such as high stretchability, high comfortability, high sensitivity, and long-term wear. To address these challenges, investigators have devoted considerable research effort to the development of technology, and much progress has been achieved. Here, recent developments with stretchable sensors are described, including human motion monitoring sensors, vital sign monitoring sensors, and sensors for environmental monitoring around biological surfaces. The latest successful examples of supersensitive sensors for achieving stretchability by novel materials or structures are reviewed. In the next section, recent advances regarding processing technology innovations are introduced. Future research directions and challenges in developing a highly stretchable supersensitive sensor for wearable biomedical applications are also discussed. With the development of new materials and novel technologies, and given the interdisciplinary nature of the research, the functionalities of stretchable sensors will become more powerful, and stretchable sensor technology will become more mature.



This research was partially supported by National Natural Science Foundation of China (61803364, U1713219), Shenzhen Fundamental Research Project (JCYJ20170307165039508), the Key Deployment Project of Chinese Academy of Sciences (Grant No. KFZD-SW-214), and SIAT Innovation Program for Excellent Young Researchers (Grant No. 2016053).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lacour SP, Wagner S, Huang Z, Suo Z (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82(15):2404–2406Google Scholar
  2. 2.
    Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human—activity monitoring and personal healthcare. Adv Mater 28(22):4338–4372Google Scholar
  3. 3.
    Hammock ML, Chortos A, Tee BC, Tok JB, Bao Z (2013) 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 25(42):5997–6038Google Scholar
  4. 4.
    You I, Kim B, Park J, Koh K, Shin S, Jung S, Jeong U (2016) Stretchable E-skin apexcardiogram sensor. Adv Mater 28(30):6359–6364Google Scholar
  5. 5.
    Tang Y, Zhao Z, Hu H, Liu Y, Wang X, Zhou S, Qiu J (2015) Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl Mater Interfaces 7(49):27432–27439Google Scholar
  6. 6.
    Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Flexible piezotronic strain sensor. Nano Lett 8(9):3035–3040Google Scholar
  7. 7.
    Zhang W, Zhu R, Nguyen V, Yang R (2014) Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays. Sens Actuators, A 205(2):164–169Google Scholar
  8. 8.
    Cheng Y, Wang R, Sun J, Gao L (2016) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 27(45):7365–7371Google Scholar
  9. 9.
    Larmagnac A, Eggenberger S, Janossy H, Vörös J (2014) Stretchable electronics based on Ag-PDMS composites. Sci Rep 4:7254Google Scholar
  10. 10.
    Choi DY, Kim MH, Oh YS, Jung SH, Jung JH, Sung HJ, Lee HW, Lee HM (2017) Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl Mater Interfaces 9(2):1770–1780Google Scholar
  11. 11.
    Nam I, Bae S, Park S, Yoo YG, Lee JM, Han JW, Yi J (2015) Omnidirectionally stretchable, high performance supercapacitors based on a graphene–carbon-nanotube layered structure. Nano Energy 15:33–42Google Scholar
  12. 12.
    Lee MS, Lee K, Kim SY, Lee H, Park J, Choi KH, Kim HK, Kim DG, Lee DY, Nam SW (2013) High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett 13(6):2814–2821Google Scholar
  13. 13.
    Liang J, Li L, Tong K, Ren Z, Hu W, Niu X, Chen Y, Pei Q (2014) Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2):1590–1600Google Scholar
  14. 14.
    Coskun MB, Akbari A, Lai D, Neild A, Majumder M, Alan T (2016) Ultrasensitive strain sensor produced by direct patterning of liquid crystals of graphene oxide on a flexible substrate. ACS Appl Mater Interfaces 8(34):22501–22505Google Scholar
  15. 15.
    Park SJ, Kim DW, Jang SW, Jin ML, Kim SJ, Ok JM, Kim JS, Jung HT (2016) Fabrication of graphite grids via stencil lithography for highly sensitive motion sensors. Carbon 96:491–496Google Scholar
  16. 16.
    Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA (2014) 3D printing: embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312Google Scholar
  17. 17.
    Lee CH, Ma Y, Jang KI, Banks A, Pan T, Feng X, Kim JS, Kang D, Raj MS, Mcgrane BL (2015) Soft core/shell packages for stretchable electronics. Adv Func Mater 25(24):3698–3704Google Scholar
  18. 18.
    Jang KI, Chung HU, Sheng X, Chi HL, Luan H, Jeong J, Cheng H, Kim GT, Sang YH, Lee JW (2015) Soft network composite materials with deterministic and bio-inspired designs. Nat Commun 6:6566Google Scholar
  19. 19.
    Matsuzaki R, Tabayashi K (2015) Highly stretchable, global, and distributed local strain sensing line using GaInSn electrodes for wearable electronics. Adv Func Mater 25(25):3806–3813Google Scholar
  20. 20.
    Yoon SG, Koo HJ, Chang ST (2015) Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl Mater Interfaces 7(49):27562–27570Google Scholar
  21. 21.
    Lee SP, Klinker LE, Ptaszek L, Work J, Liu C, Quivara F, Webb C, Dagdeviren C, Wright JA, Ruskin JN (2015) Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology. Proc IEEE 103(4):682–689Google Scholar
  22. 22.
    Rogers E, Polygerinos P, Walsh C, Goldfield E (2015) Smart and connected actuated mobile and sensing suit to encourage motion in developmentally delayed infants 1. J Med Devices 9(3):030914Google Scholar
  23. 23.
    Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D, Zhu H (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Func Mater 24(29):4666–4670Google Scholar
  24. 24.
    Park JJ, Hyun WJ, Mun SC, Park YT, Park OO (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7(11):6317–6324Google Scholar
  25. 25.
    Rodgers MM, Pai VM, Conroy RS (2015) Recent advances in wearable sensors for health monitoring. Sens J IEEE 15(6):3119–3126Google Scholar
  26. 26.
    Jang KI, Han SY, Xu S, Mathewson KE, Zhang Y, Jeong JW, Kim GT, Webb RC, Lee JW, Dawidczyk TJ (2014) Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun 5(5):4779Google Scholar
  27. 27.
    Rosset S, Niklaus M, Dubois P, Shea HR (2008) Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes. Sens Actuators, A 144(1):185–193Google Scholar
  28. 28.
    Zhang Y, Chad Webb R, Luo H, Xue Y, Kurniawan J, Cho NH, Krishnan S, Li Y, Huang Y, Rogers JA (2016) Flexible electronics: theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Adv Healthcare Mater 5(1):119–127Google Scholar
  29. 29.
    Trung TQ, Ramasundaram S, Lee NE (2017) Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nanoresearch 10(6):2021–2033Google Scholar
  30. 30.
    Liao X, Liao Q, Zhang Z, Yan X, Liang Q, Wang Q, Li M, Zhang Y (2016) A highly stretchable ZnO@Fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv Func Mater 26(18):3074–3081Google Scholar
  31. 31.
    Ho MD, Ling Y, Yap LW, Wang Y, Dong D, Zhao Y, Cheng W (2017) Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv Func Mater 27(25):1700845Google Scholar
  32. 32.
    Nam SH, Jeon PJ, Min SW, Lee YT, Park EY, Im S (2014) Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate. Adv Func Mater 24(28):4413–4419Google Scholar
  33. 33.
    Chen S, Wei Y, Yuan X, Lin Y, Liu L (2016) A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. J Mater Chem C 4(19):4304–4311Google Scholar
  34. 34.
    Lee H, Cho J, Kim J (2016) Printable skin adhesive stretch sensor for measuring multi-axis human joint angles. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4975–4980Google Scholar
  35. 35.
    Roh E, Hwang BU, Kim D, Kim BY, Lee NE (2015) Stretchable, transparent, ultra-sensitive and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6):6252–6261Google Scholar
  36. 36.
    Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514Google Scholar
  37. 37.
    Park J, Kim J, Kim K, Kim SY, Cheong WH, Park K, Song JH, Namgoong G, Kim JJ, Heo J (2016) Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale 8(20):10591–10597Google Scholar
  38. 38.
    Park Y, Shim J, Jeong S, Yi GR, Chae H, Bae JW, Kim SO, Pang C (2017) Microtopography-guided conductive patterns of liquid-driven graphene nanoplatelet networks for stretchable and skin-conformal sensor array. Adv Mater 29(21):1606453Google Scholar
  39. 39.
    Wu X, Han Y, Zhang X, Lu C (2016) Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl Mater Interfaces 8(15):9936–9945Google Scholar
  40. 40.
    Lu C, Park S, Richner TJ, Derry A, Brown I, Hou C, Rao S, Kang J, Moritz CT, Fink Y (2017) Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci Adv 3(3):e1600955Google Scholar
  41. 41.
    Ki H, Jang J, Jo Y, Kim DY, Chee SS, Oh BY, Song C, Sun SL, Choi S, Choi Y (2015) Chemically driven, water-soluble composites of carbon nanotubes and silver nanoparticles as stretchable conductors. ACS Macro Lett 4(7):769–773Google Scholar
  42. 42.
    Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301Google Scholar
  43. 43.
    Khan Y, Ostfeld AE, Lochner CM, Pierre A, Arias AC (2016) Monitoring of vital signs with flexible and wearable medical devices. Adv Mater 28(22):4373–4395Google Scholar
  44. 44.
    He W, Sun Y, Xi J, Abdurhman AA, Ren J, Duan H (2016) Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose. Anal Chim Acta 903:61–68Google Scholar
  45. 45.
    Lee JH, Lee KY, Gupta MK, Kim TY, Lee DY, Oh J, Ryu C, Yoo WJ, Kang CY, Yoon SJ (2014) Highly stretchable piezoelectric–pyroelectric hybrid nanogenerator. Adv Mater 26(5):765–769Google Scholar
  46. 46.
    Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H, Shi M, Bian Z, Liu Z, Kim YS, Yeo WH (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12(10):938–944Google Scholar
  47. 47.
    Yan C, Wang J, Lee PS (2014) Stretchable graphene thermistor with tunable thermal index. ACS Nano 9(2):2130–2137Google Scholar
  48. 48.
    Jin J, Lee HBR, Bao Z (2013) Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater 25(6):850–855Google Scholar
  49. 49.
    Wu X, Ma Y, Zhang G, Chu Y, Du J, Zhang Y, Li Z, Duan Y, Fan Z, Huang J (2015) Thermally stable, biocompatible, and flexible organic field-effect transistors and their application in temperature sensing arrays for artificial skin. Adv Func Mater 25(14):2138–2146Google Scholar
  50. 50.
    Lee JS, Heo J, Lee WK, Yong GL, Kim YH, Park KS (2014) Flexible capacitive electrodes for minimizing motion artifacts in ambulatory electrocardiograms. Sensors 14(8):14732–14743Google Scholar
  51. 51.
    Nemati E, Deen MJ, Mondal T (2012) A wireless wearable ECG sensor for long-term applications. IEEE Commun Mag 50(1):36–43Google Scholar
  52. 52.
    Yi S, Cheng L, Zhe W, Mi W, Li Y, Ren TL (2015) A Pressure sensing system for heart rate monitoring with polymer-based pressure sensors and an anti-interference post processing circuit. Sensors 15(2):3224–3235Google Scholar
  53. 53.
    Yu Y, Zhang J, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771Google Scholar
  54. 54.
    Hwang SW, Lee CH, Cheng H, Jeong JW, Kang SK, Kim JH, Shin J, Yang J, Liu Z, Ameer GA (2015) Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett 15(5):2801–2808Google Scholar
  55. 55.
    Yeo WH, Kim YS, Lee J, Ameen A, Shi L, Li M, Wang S, Ma R, Jin SH, Kang Z (2013) Multifunctional epidermal electronics printed directly onto the skin. Adv Mater 25(20):2773–2778Google Scholar
  56. 56.
    Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee JE, Song C, Kim SJ, Lee DJ, Jun SW (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol 9(5):397–404Google Scholar
  57. 57.
    Kim T, Park J, Sohn J, Cho D, Jeon S (2016) Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10(4):4770–4778Google Scholar
  58. 58.
    Jung HC, Moon JH, Baek DH, Lee JH, Choi YY, Hong JS, Lee SH (2012) CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans Biomed Eng 59(5):1472–1479Google Scholar
  59. 59.
    Wang LF, Liu JQ, Peng HL, Yang B (2013) MEMS-based flexible capacitive electrode for ECG measurement. Electron Lett 49(12):739–740Google Scholar
  60. 60.
    Xu S, Zhang Y, Jia L, Mathewson KE, Jang KI, Kim J, Fu H, Huang X, Chava P, Wang R, Bhole S, Wang L, Na YJ, Guan Y, Flavin M, Han Z, Huang Y, Rogers JA (2014) Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344(6179):70–74Google Scholar
  61. 61.
    Tamura T, Maeda Y, Sekine M, Yoshida M (2014) Wearable photoplethysmographic sensors—past and present. Electronics 3(2):282–302Google Scholar
  62. 62.
    Schwartz G, Tee BC, Mei J, Appleton AL, Kim DH, Wang H, Bao Z (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4(5):1859Google Scholar
  63. 63.
    Nie B, Xing S, Brandt JD, Pan T (2012) Droplet-based interfacial capacitive sensing. Lab Chip 12(6):1110–1118Google Scholar
  64. 64.
    Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C (2017) Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9(19):6246–6253Google Scholar
  65. 65.
    Hedrich F, Kliche K, Storz M, Billat S, Ashauer M, Zengerle R (2010) Thermal flow sensors for MEMS spirometric devices. Sens Actuators, A 162(2):373–378Google Scholar
  66. 66.
    Park J, Lee Y, Hong J, Ha M, Jung YD, Lim H, Kim SY, Ko H (2014) Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8(5):4689–4697Google Scholar
  67. 67.
    Min SD, Yun Y, Shin H (2014) Simplified structural textile respiration sensor based on capacitive pressure sensing method. IEEE Sens J 14(9):3245–3251Google Scholar
  68. 68.
    Boland CS, Khan U, Backes C, O’Neill A, Mccauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8(9):8819–8830Google Scholar
  69. 69.
    Pegan JD, Zhang J, Chu M, Nguyen T, Park SJ, Paul A, Kim J, Bachman M, Khine M (2016) Skin-mountable stretch sensor for wearable health monitoring. Nanoscale 8(39):17295–17303Google Scholar
  70. 70.
    Bai P, Zhu G, Jing Q, Yang J, Chen J, Su Y, Ma J, Zhang G, Wang ZL (2015) Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv Func Mater 24(37):5807–5813Google Scholar
  71. 71.
    Li M, Li H, Zhong W, Zhao Q, Dong W (2014) Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6(2):1313–1319Google Scholar
  72. 72.
    Hwang BU, Lee JH, Trung TQ, Roh E, Kim DI, Kim SW, Lee NE (2015) Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9(9):8801–8810Google Scholar
  73. 73.
    Atalay O, Kennon WR, Demirok E (2015) Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling. Sens J IEEE 15(1):110–122Google Scholar
  74. 74.
    Guo L, Berglin L, Wiklund U (2015) Design of a garment-based sensing system for breathing monitoring. Text Res J 83(5):499–509Google Scholar
  75. 75.
    Zheng W, Tao X, Zhu B, Wang G, Hui C (2014) Fabrication and evaluation of a notched polymer optical fiber fabric strain sensor and its application in human respiration monitoring. Text Res J 84(17):1791–1802Google Scholar
  76. 76.
    Denardo SJ, Nandyala R, Freeman GL, Pierce GL, Nichols WW (2010) Pulse wave analysis of the aortic pressure waveform in severe left ventricular systolic dysfunction. Circ Heart Fail 3(1):149–156Google Scholar
  77. 77.
    Tee BCK, Chortos A, Dunn RR, Schwartz G, Eason E, Bao Z (2015) Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv Func Mater 24(34):5427–5434Google Scholar
  78. 78.
    Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers JA (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4(3):1633Google Scholar
  79. 79.
    Pang C, Lee GY, Kim TI, Kim SM, Kim HN, Ahn SH, Suh KY (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11(9):795–801Google Scholar
  80. 80.
    Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim YS, Huang Y, Damadoran AR, Xia J, Martin LW (2014) Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun 5(7697):4496Google Scholar
  81. 81.
    Choong CL, Shim MB, Lee BS, Jeon S, Ko DS, Kang TH, Bae J, Lee SH, Byun KE, Im J (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26(21):3451–3458Google Scholar
  82. 82.
    Lochner CM, Khan Y, Pierre A, Arias AC (2014) All-organic optoelectronic sensor for pulse oximetry. Nat Commun 5:5745Google Scholar
  83. 83.
    Vashist SK (2012) Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 750(11):16–27Google Scholar
  84. 84.
    Bandodkar AJ, Jia W, Yardımcı C, Wang X, Ramirez J, Wang J, Chem A (2014) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 87(1):394–398Google Scholar
  85. 85.
    Kwak YH, Dong SC, Ye NK, Kim H, Yoon DH, Ahn SS, Yang JW, Yang WS, Seo S (2012) Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron 37(1):82–87Google Scholar
  86. 86.
    You X, Pak JJ (2014) Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens Actuators B Chem 202(4):1357–1365Google Scholar
  87. 87.
    Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9):6158–6160Google Scholar
  88. 88.
    You X, Pikul JH, King WP, Pak JJ (2013) Zinc oxide inverse opal enzymatic biosensor. Appl Phys Lett 102(25):253103-1–253103-5Google Scholar
  89. 89.
    Liao Y-T, Yao H, Lingley A, Parviz B, Otis BP (2012) A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J Solid-State Circuits 47(1):335–344Google Scholar
  90. 90.
    Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA (2011) A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron 26(7):3290–3296Google Scholar
  91. 91.
    Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sens Actuators B Chem 218:160–183Google Scholar
  92. 92.
    Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) A survey on gas sensing technology. Sensors 12(7):9635–9665Google Scholar
  93. 93.
    Yun YJ, Hong WG, Choi NJ, Kim BH, Jun Y, Lee HK (2015) Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor. Sci Rep 5(10904):10904Google Scholar
  94. 94.
    Bai S, Sun C, Wan P, Wang C, Luo R, Li Y, Liu J, Sun X (2015) Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small 11(3):306–310Google Scholar
  95. 95.
    Ryu H, Cho SJ, Kim B, Lim G (2014) A stretchable humidity sensor based on a wrinkled polyaniline nanostructure. RSC Adv 4(75):39767–39770Google Scholar
  96. 96.
    Boots AW, van Berkel JJ, Dallinga JW, Smolinska A, Wouters EF, van Schooten FJ (2012) The versatile use of exhaled volatile organic compounds in human health and disease. J Breath Res 6(2):027108Google Scholar
  97. 97.
    And JMS, Sacks RD (2003) GC analysis of human breath with a series-coupled column ensemble and a multibed sorption trap. Anal Chem 75(10):2231–2236Google Scholar
  98. 98.
    Mukhopadhyay R (2004) Don’t waste your breath. Anal Chem 76(15):273A–276AGoogle Scholar
  99. 99.
    Lord H, Yu Y, Segal A, Pawliszyn J (2002) Breath analysis and monitoring by membrane extraction with sorbent interface. Anal Chem 74(21):5650–5657Google Scholar
  100. 100.
    Smith D, Spanel P (2010) Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev 24(5):661–700Google Scholar
  101. 101.
    Konvalina G, Haick H (2013) Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc Chem Res 47(1):66–76Google Scholar
  102. 102.
    Shin J, Choi SJ, Lee I, Youn DY, Chong OP, Lee JH, Tuller HL, Kim ID (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Func Mater 23(19):2357–2367Google Scholar
  103. 103.
    Milne SD, Seoudi I, Al Hamad H, Talal TK, Anoop AA, Allahverdi N, Zakaria Z, Menzies R, Connolly P (2016) A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status. Int Wound J 13(6):1309–1314Google Scholar
  104. 104.
    Mehmood N, Hariz A, Templeton S, Voelcker NH (2015) A flexible and low power telemetric sensing and monitoring system for chronic wound diagnostics. BioMed Eng Online 14(1):17Google Scholar
  105. 105.
    Garde AS (2014) Humidity sensing properties of WO3 thick film resistor prepared by screen printing technique. J Alloy Compd 617:367–373Google Scholar
  106. 106.
    Kim HS, Park JS, Jeong HK, Son KS, Kim TS, Seon JB, Lee E, Chung JG, Kim DH, Ryu M (2012) Density of states-based design of metal oxide thin-film transistors for high mobility and superior photostability. ACS Appl Mater Interfaces 4(10):5416–5421Google Scholar
  107. 107.
    Bi H, Yin K, Xie X, Ji J, Wan S, Sun L, Terrones M, Dresselhaus MS (2013) Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3(9):2714Google Scholar
  108. 108.
    Lee JH, Yang D, Kim S, Park I (2013) Stretchable strain sensor based on metal nanoparticle thin film for human motion detection & flexible pressure sensing devices. In: 2013 Transducers & Eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems. IEEE, pp 2624–2627Google Scholar
  109. 109.
    Zhang X, Wang W, Li F, Voiculescu I (2017) Stretchable impedance sensor for mammalian cell proliferation measurements. Lab Chip 17(12):2054–2066Google Scholar
  110. 110.
    Melzer M, Karnaushenko D, Lin G, Baunack S, Makarov D, Schmidt OG (2015) Stretchable electronics: direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Adv Mater 27(8):1333–1338Google Scholar
  111. 111.
    Chou N, Jeong J, Kim S (2013) Crack-free and reliable lithographical patterning methods on PDMS substrate. J Micromech Microeng 23(12):5035Google Scholar
  112. 112.
    Guo L, Deweerth SP (2010) An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6(24):2847–2852Google Scholar
  113. 113.
    Yang Y, Ding S, Araki T, Jiu J, Sugahara T, Wang J, Vanfleteren J, Sekitani T, Suganuma K (2016) Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nanoresearch 9(2):401–414Google Scholar
  114. 114.
    Trung TQ, Ramasundaram S, Hwang BU, Lee NE (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28(3):502–509Google Scholar
  115. 115.
    Wan S, Li Y, Peng J, Hu H, Cheng Q, Jiang L (2015) Synergistic toughening of graphene oxide–molybdenum disulfide–thermoplastic polyurethane ternary artificial nacre. ACS Nano 9(1):708–714Google Scholar
  116. 116.
    Adler M, Bieringer R, Schauber T, Günther J (2012) Materials for stretchable electronics compliant with printed circuit board fabrication. Wiley, WeinheimGoogle Scholar
  117. 117.
    Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47(4):1383–1391Google Scholar
  118. 118.
    Yan C, Cho JH, Ahn JH (2012) Graphene-based flexible and stretchable thin film transistors. Nanoscale 4(16):4870–4882Google Scholar
  119. 119.
    Park G, Chung HJ, Kim K, Lim SA, Kim J, Kim YS, Liu Y, Yeo WH, Kim RH, Kim SS (2014) Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv Healthcare Mater 3(4):515–525Google Scholar
  120. 120.
    Ruh D, Reith P, Sherman S, Theodor M, Ruhhammer J, Seifert A, Zappe H (2014) Stretchable optoelectronic circuits embedded in a polymer network. Adv Mater 26(11):1706–1710Google Scholar
  121. 121.
    Yun J, Lim Y, Jang GN, Kim D, Lee SJ, Park H, Hong SY, Lee G, Zi G, Ha JS (2016) Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy 19:401–414Google Scholar
  122. 122.
    Amjadi M, Yoon YJ, Park I (2015) Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-ecoflex nanocomposites. Nanotechnology 26(37):375501Google Scholar
  123. 123.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706Google Scholar
  124. 124.
    Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47(14):3365–3368Google Scholar
  125. 125.
    Xie H, Wang K, Zhang Z, Zhao X, Liu F, Mu H (2015) Temperature and thickness dependence of the sensitivity of nitrogen dioxide graphene gas sensors modified by the atomic layer deposited Zinc Oxide films. RSC Adv 5(36):28030–28037Google Scholar
  126. 126.
    Shi G, Zhao Z, Pai JH, Lee I, Zhang L, Stevenson C, Ishara K, Zhang R, Zhu H, Ma J (2016) Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv Func Mater 26(42):7614–7625Google Scholar
  127. 127.
    Lin Y, Liu S, Chen S, Wei Y, Dong X, Liu L (2016) A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network. J Mater Chem C 4(26):6345–6352Google Scholar
  128. 128.
    Dong Z, Jiang C, Cheng H, Yang Z, Shi G, Lan J, Qu L (2012) Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater 24(14):1856–1861Google Scholar
  129. 129.
    Xu Z, Sun H, Zhao X, Gao C (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25(2):188–193Google Scholar
  130. 130.
    Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686Google Scholar
  131. 131.
    Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23(9):1089–1115Google Scholar
  132. 132.
    De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539Google Scholar
  133. 133.
    Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5):1727–1752Google Scholar
  134. 134.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 364(6439):737Google Scholar
  135. 135.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58Google Scholar
  136. 136.
    Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K (1994) Purification of nanotubes. Nature 367(6463):519Google Scholar
  137. 137.
    Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995) Self-assembly of tubular fullerenes. J Phys Chem 99(27):10694–10697Google Scholar
  138. 138.
    Colomer JF, Willems I, Kónya Z, Fonseca A, Nagy JB, Tendeloo GV (1999) Synthesis of single-wall carbon nanotubesby catalytic decomposition of hydrocarbons. Chem Commun 14(14):1343–1344Google Scholar
  139. 139.
    Xiao X, Peng X, Jin H, Li T, Zhang C, Gao B, Hu B, Huo K, Zhou J (2013) Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv Mater 25(36):5091–5097Google Scholar
  140. 140.
    Kim SH, Song W, Jung MW, Kang MA, Kim K, Chang SJ, Lee SS, Lim J, Hwang J, Myung S (2014) Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv Mater 26(25):4247–4252Google Scholar
  141. 141.
    Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792Google Scholar
  142. 142.
    Ko H, Lee J, Kim Y, Lee B, Jung CH, Choi JH, Kwon OS, Shin K (2014) Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Adv Mater 26(15):2335–2340Google Scholar
  143. 143.
    Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH (2012) Flexible electronics: highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24(25):3326–3332Google Scholar
  144. 144.
    Bjørnetun Haugen A, Forrester JS, Damjanovic D, Li B, Bowman KJ, Jones JL (2013) Structure and phase transitions in 0.5(Ba0.7Ca0.3TiO3)–0.5(BaZr0.2Ti0.8O3) from − 100°C to 150°C. J Appl Phys 113(1):257602Google Scholar
  145. 145.
    Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5):5154–5163Google Scholar
  146. 146.
    Segevbar M, Haick H (2013) Flexible sensors based on nanoparticles. ACS Nano 7(10):8366–8378Google Scholar
  147. 147.
    Lee J, Kim S, Lee J, Yang D, Park BC, Ryu S, Park I (2014) A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6(20):11932–11939Google Scholar
  148. 148.
    Nassar JM, Rojas JP, Hussain AM, Hussain MM (2016) From stretchable to reconfigurable inorganic electronics. Extreme Mech Lett 9:245–268Google Scholar
  149. 149.
    Kramer RK, Majidi C, Wood RJ (2013) Masked deposition of gallium–indium alloys for liquid-embedded elastomer conductors. Adv Func Mater 23(42):5292–5296Google Scholar
  150. 150.
    Boley JW, White EL, Chiu GTC, Kramer RK (2014) Direct writing of gallium–indium alloy for stretchable electronics. Adv Func Mater 24(23):3501–3507Google Scholar
  151. 151.
    Cumby BL, Hayes GJ, Dickey MD, Justice RS, Tabor CE, Heikenfeld JC (2012) Reconfigurable liquid metal circuits by Laplace pressure shaping. Appl Phys Lett 101(17):277–303Google Scholar
  152. 152.
    Park J, Wang S, Li M, Ahn C, Hyun JK, Kim DS, Kim K, Rogers JA, Huang Y, Jeon S (2012) Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat Commun 3(2):916Google Scholar
  153. 153.
    Suzuki K, Yataka K, Okumiya Y, Sakakibara S, Sako K, Mimura H, Inoue Y (2016) Rapid-response, widely stretchable sensor of aligned MWCNT/elastomer composites for human motion detection. ACS Sens 1(6):817–825Google Scholar
  154. 154.
    Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14(1):868–876Google Scholar
  155. 155.
    Xiao L, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao A, Li Z, Yao C, Zheng Q (2012) Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2(6109):870Google Scholar
  156. 156.
    Yao S, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4):2345–2352Google Scholar
  157. 157.
    Cai L, Song L, Luan P, Zhang Q, Zhang N, Gao Q, Zhao D, Zhang X, Tu M, Yang F (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3(6157):3048Google Scholar
  158. 158.
    Zhang S, Zhang H, Yao G, Liao F, Gao M, Huang Z, Li K, Lin Y (2015) Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J Alloy Compd 652:48–54Google Scholar
  159. 159.
    Ma Z, Su B, Gong S, Wang Y, Yap LW, Simon GP, Cheng W (2016) Liquid-wetting-solid strategy to fabricate stretchable sensors for human-motion detection. ACS Sens 1(3):303–311Google Scholar
  160. 160.
    Bae S-H, Lee Y, Sharma BK, Lee H-J, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51(1):236–242Google Scholar
  161. 161.
    Sun M, Liu H, Liu Y, Qu J, Li J (2015) Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale 7(4):1250–1269Google Scholar
  162. 162.
    Yu J, Lu W, Pei S, Gong K, Wang L, Meng L, Huang Y, Smith JP, Booksh KS, Li Q (2016) Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 10(5):5204–5211Google Scholar
  163. 163.
    Hafeez H, Zou Z, Kim DH, Shin JY, Song M, Kim CS, Choi WJ, Song J, Xiao J, Ryu SY (2017) Multiaxial wavy top-emission organic light-emitting diodes on thermally prestrained elastomeric substrates. Org Electron 48:314–322Google Scholar
  164. 164.
    Gao L, Zhang Y, Zhang H, Doshay S, Xie X, Luo H, Shah D, Shi Y, Xu S, Fang H, Fan JA (2015) Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures. ACS Nano 9(6):5968–5975Google Scholar
  165. 165.
    Sun Y, Choi WM, Jiang H, Huang YY, Rogers JA (2006) Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 1(3):201–207Google Scholar
  166. 166.
    Shang Y, He X, Li Y, Zhang L, Li Z, Ji C, Shi E, Li P, Zhu K, Peng Q (2012) Super-stretchable spring-like carbon nanotube ropes. Adv Mater 24(21):2896–2900Google Scholar
  167. 167.
    Hua C, Shang Y, Li X, Hu X, Wang Y, Wang X, Zhang Y, Li X, Duan H, Cao A (2016) Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker. Nanoscale 8(20):10659–10668Google Scholar
  168. 168.
    Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8(6):494–499Google Scholar
  169. 169.
    Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY (2012) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7(12):803–809Google Scholar
  170. 170.
    Wang X, Li T, Adams J, Yang J (2013) Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. J Mater Chem A 1(11):3580–3586Google Scholar
  171. 171.
    Li G, Wu X, Lee DW (2016) A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability. Lab Chip 16(8):1366–1373Google Scholar
  172. 172.
    Lu T, Finkenauer L, Wissman J, Majidi C (2014) Rapid prototyping for soft-matter electronics. Adv Func Mater 24(22):3351–3356Google Scholar
  173. 173.
    Vogt DM, Park YL, Wood RJ (2013) Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens J 13(10):4056–4064Google Scholar
  174. 174.
    Vural M, Behrens AM, Ayyub OB, Ayoub JJ, Kofinas P (2015) Sprayable elastic conductors based on block copolymer silver nanoparticle composites. ACS Nano 9(1):336–344Google Scholar
  175. 175.
    Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10(3):034002Google Scholar
  176. 176.
    Kong YL, Tamargo IA, Kim H, Johnson BN, Gupta MK, Koh TW, Chin HA, Steingart DA, Rand BP, McAlpine MC (2014) 3D printed quantum dot light-emitting diodes. Nano Lett 14(12):7017–7023Google Scholar
  177. 177.
    Burns A, Greene BR, McGrath MJ et al (2010) SHIMMER™—a wireless sensor platform for noninvasive biomedical research. IEEE Sens J 10(9):1527–1534Google Scholar
  178. 178.
    Guan L, Nilghaz A, Su B et al (2016) Stretchable-fiber-confined wetting conductive liquids as wearable human health monitors. Adv Func Mater 26(25):4511–4517Google Scholar
  179. 179.
    Jung S, Hong S, Kim J et al (2015) Wearable fall detector using integrated sensors and energy devices. Sci Rep 5:17081Google Scholar
  180. 180.
    Xie K, Zhang S, Dong S et al (2017) Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment. Sci Rep 7(1):7808Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and EngineeringNanjing UniversityNanjingChina
  3. 3.The College of Big Data and InternetShenzhen Technology UniversityShenzhenChina

Personalised recommendations