Advertisement

Journal of Materials Science

, Volume 54, Issue 6, pp 4742–4753 | Cite as

Atomic interactions in C15 Laves phases

  • J.-C. CrivelloEmail author
  • J.-M. Joubert
  • T. Mohri
Computation
  • 89 Downloads

Abstract

The C15 phase (\(Fd\bar{3}m\)) has been extensively studied by several methodologies to evaluate its atomic interactions. Ideally ordered at the \(AB_2\) composition, this Laves phase is known to present a non-stoichiometry domain accommodated by substitutional atomic disorder at high temperature. With the Cu–Mg system as an example, a cluster expansion method study revealed that first neighbors pair interaction is positive yielding a favorable mixing of Cu and Mg atoms in 16d site and a homogeneity extended in the Mg-richer side. To guide the thermodynamic modeling of the C15 phase, special quasi-random structure cells have been generated at several compositions to simulate atom mixing with and without the merging of 8a and 16d sites. Combined with electronic density functional theory, calculation on several systems (Ta–V, Cr–Nb, Mo–Zr and Cr–Ti) was done to estimate the mixing energies on the two different sublattices. The results are compared to published assessments and open a discussion on the acceptability of the traditional thermodynamic model.

Notes

Acknowledgements

Financial support from the Japan Society for the Promotion of Science (JSPS) is gratefully acknowledged. Calculations were performed using HPC resources from GENCI-CINES (No. 2017-096175) and supercomputer at IMR, Tohoku University (No. 16S0403). The authors thank Christine Guéneau for providing the last version of the Cu–Mg system data files compiled for the SATA school [24].

Supplementary material

10853_2018_3169_MOESM1_ESM.zip (10 kb)
The file SQS-POSCAR-AB2.zip contains the structural description of the suggested SQS cells corresponding of Table 2, in VASP format (POSCAR and KPOINTS files).
10853_2018_3169_MOESM2_ESM.pdf (130 kb)
The file Cu-Mg.TDB is the thermodynamic database file optimized from this studied, with 3 hypotheses of interaction parameters for the Laves phase.
10853_2018_3169_MOESM3_ESM.tdb (5 kb)
Supplementary material 3 (TDB 6 kb).

References

  1. 1.
    Andersson JO, Guillermet A, Hillert M, Jansson B, Sundman B (1986) A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall 34(3):437–445CrossRefGoogle Scholar
  2. 2.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  3. 3.
    Connolly JWD, Williams AR (1983) Density-functional theory applied to phase transformations in transition-metal alloys. Phys Rev B 27(8):5169–5172CrossRefGoogle Scholar
  4. 4.
    Danon C, Servant C (2004) A thermodynamic evaluation of the Ta–V system. J Alloys Compd 366(1):191–200CrossRefGoogle Scholar
  5. 5.
    Frank FC, Kasper JS (1958) Complex alloy structures regarded as sphere packings. i. Definitions and basic principles. Acta Crystallogr 11(3):184–190CrossRefGoogle Scholar
  6. 6.
    Frank FC, Kasper JS (1959) Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr 12(7):483–499CrossRefGoogle Scholar
  7. 7.
    Ghosh G (2002) Thermodynamic and kinetic modeling of the Cr–Ti–V system. J Phase Equilibria 23(4):310–328CrossRefGoogle Scholar
  8. 8.
    Jacob A, Schmetterer C, Khvan A, Kondratiev A, Ivanov D, Hallstedt B (2016) Liquidus projection and thermodynamic modeling of the Cr–Fe–Nb ternary system. Calphad 54:1–15CrossRefGoogle Scholar
  9. 9.
    Joubert JM (2008) Crystal chemistry and calphad modeling of the \(\sigma \) phase. Prog Mater Sci 53:528–583CrossRefGoogle Scholar
  10. 10.
    Joubert JM, Crivello JC (2012) Non-stoichiometry and Calphad modeling of Frank–Kasper phases. Appl Sci 2(3):669–681CrossRefGoogle Scholar
  11. 11.
    Joubert JM, Phejar M (2009) Crystal chemistry and calphad modeling of the \(\chi \) phase. Prog Mater Sci 54:945–980CrossRefGoogle Scholar
  12. 12.
    King R, Kleppa O (1964) A thermochemical study of some selected laves phases. Acta Metall 12:87–97CrossRefGoogle Scholar
  13. 13.
    Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–1140CrossRefGoogle Scholar
  14. 14.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  15. 15.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  16. 16.
    Lu HJ, Wang WB, Zou N, Shen JY, Lu XG, He YL (2015) Thermodynamic modeling of Cr–Nb and Zr–Cr with extension to the ternary Zr–Nb–Cr system. Calphad 50:134–143CrossRefGoogle Scholar
  17. 17.
    Parlinski K, Li ZQ, Kawazoe Y (1997) First-principles determination of the soft mode in cubic \(\text{ ZrO }_{2}\). Phys Rev Lett 78(21):4063–4066CrossRefGoogle Scholar
  18. 18.
    Pavlů J, Vřeštál J, Chen X, Rogl P (2011) Thermodynamic modeling of laves phases in the Ta–V system: reassessment using first-principles results. Calphad 35(1):103–108CrossRefGoogle Scholar
  19. 19.
    Pavlů J, Vřeštál J, Šob M (2010) Thermodynamic modeling of laves phases in the Cr–Hf and Cr–Ti systems: reassessment using first-principles results. Calphad 34(2):215–221CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  21. 21.
    Pérez RJ, Sundman B (2003) Thermodynamic assessment of the Mo–Zr binary phase diagram. Calphad 27(3):253–262CrossRefGoogle Scholar
  22. 22.
    Sanchez J (2010) Cluster expansion and the configurational theory of alloys. Phys Rev B 81(22):224202-1–224202-13CrossRefGoogle Scholar
  23. 23.
    Sanchez J, Ducastelle F, Gratias D (1984) Generalized cluster description of multicomponent systems. Phys A 128:334–350CrossRefGoogle Scholar
  24. 24.
    School for Advanced Thermodynamic Assessments (SATA) (2007) Training of thermodynamic assessment on Mg–Cu system. In: Presqu’île de Giens, CEA organisation, FranceGoogle Scholar
  25. 25.
    Sundman B, Ågren J (1981) A regular solution model for phases with several components and sublattices, suitable for computer applications. J Phys Chem Solids 42:297–301CrossRefGoogle Scholar
  26. 26.
    Sundman B, Chen Q, Du Y (2018) A review of Calphad modeling of ordered phases. J Phase Equilibria Diffus 39(5):678–693CrossRefGoogle Scholar
  27. 27.
    Sundman B, Kattner U, Palumbo M, Fries S (2015) Opencalphad—a free thermodynamic software. Integr Mater Manuf Innov 4(1):1.  https://doi.org/10.1186/s40192-014-0029-1 CrossRefGoogle Scholar
  28. 28.
    Sundman B, Lukas HL, Fries SG (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and \(\text{ CaCl }_2\)-type \(\text{ SiO }_2\) at high pressures. Phys Rev B 78:134106.  https://doi.org/10.1103/PhysRevB.78.134106 CrossRefGoogle Scholar
  30. 30.
    van de Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. Calphad 26(4):539–553CrossRefGoogle Scholar
  31. 31.
    van de Walle A, Sun R, Hong QJ, Kadkhodaei S (2017) Software tools for high-throughput calphad from first-principles data. Calphad 58:70–81CrossRefGoogle Scholar
  32. 32.
    van de Walle A, Tiwary P, de Jong M, Olmsted D, Asta M, Dick A, Shin D, Wang Y, Chen LQ, Liu ZK (2013) Efficient stochastic generation of special quasirandom structures. Calphad 42:13–18CrossRefGoogle Scholar
  33. 33.
    Zinkevich M, Mattern N (2002) Thermodynamic assessment of the Mo–Zr system. J Phase Equilibria 23(2):156–162CrossRefGoogle Scholar
  34. 34.
    Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65(3):353–356CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CMTR, ICMPE, CNRS - UPEC, UMR7182ThiaisFrance
  2. 2.PCoMS, IMRTohoku UniversitySendaiJapan

Personalised recommendations