Advertisement

Journal of Materials Science

, Volume 54, Issue 6, pp 4780–4787 | Cite as

Highly conductive two-dimensional electron gas at the interface of Al2O3/SrTiO3

  • Zhaoting Zhang
  • Hong Yan
  • Shuanhu Wang
  • Min Wang
  • Lixia Ren
  • Changle Chen
  • Kexin JinEmail author
Electronic materials
  • 151 Downloads

Abstract

We create a two-dimensional electron gas at the Al2O3/SrTiO3/LaAlO3 heterostructures using pulsed laser deposition, which exhibits a decreasing sheet resistance with increasing growth temperatures of Al2O3 films. Structural characterizations of films are confirmed by cross-sectional transmission electron microscopy. Compared with these heterostructures with Al2O3 films deposited on pristine SrTiO3 and TiO2-terminated SrTiO3 substrates, the Al2O3/SrTiO3/LaAlO3 heterostructures are more conductive. X-ray photoelectron spectroscopy indicates the formation of oxygen vacancies at the SrTiO3 side of the interface, which results from the redox reactions by reducing SrTiO3 films. Furthermore, the existence of oxygen vacancies on the SrTiO3 side is verified by a blue-light emission.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51572222, 51172183 and 61471301).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Ohtomo A, Hwang HY (2004) A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–426CrossRefGoogle Scholar
  2. 2.
    Chen YZ, Bovet N, Trier F, Christensen DV, Qu FM, Andersen NH, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen TS, Sun JR, Smith A, Nygård J, Lu L, Büchner B, Shen BG, Linderoth S, Pryds N (2013) A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. Nat Commun 4:1371CrossRefGoogle Scholar
  3. 3.
    Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G, Richter C, Schneider CW, Kopp T, Rüetschi AS, Jaccard D, Gabay M, Muller DA, Triscone JM, Mannhart J (2007) Superconducting interfaces between insulating oxides. Science 317:1196–1199CrossRefGoogle Scholar
  4. 4.
    Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan JC, van der Wiel WG, Rijnders G, Blank DHA, Hilgenkamp H (2007) Magnetic effects at the interface between non-magnetic oxides. Nat Mater 6:493–496CrossRefGoogle Scholar
  5. 5.
    Ariando Wang X, Baskaran G, Liu ZQ, Huijben J, Yi JB, Annadi A, Barman AR, Rusydi A, Dhar S, Feng YP, Ding HHJ, Venkatesan T (2011) Electronic phase separation at the LaAlO3/SrTiO3 interface. Nat Commun 2:188CrossRefGoogle Scholar
  6. 6.
    Li L, Richter C, Mannhart J, Ashoori RC (2011) Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat Phys 7:762–766CrossRefGoogle Scholar
  7. 7.
    Bert JA, Kalisky B, Bell C, Kim M, Hikita Y, Hwang HY, Moler KA (2011) Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat Phys 7:767–771CrossRefGoogle Scholar
  8. 8.
    Caviglia AD, Gabay M, Gariglio S, Reyren N, Cancellieri C, Triscone JM (2010) Tunable Rashba spin-orbit interaction at oxide interfaces. Phys Rev Lett 104:126803CrossRefGoogle Scholar
  9. 9.
    Chen YZ, Trier F, Kasama T, Christensen DV, Bovet N, Balogh ZI, Li H, Thydén KTS, Zhang W, Yazdi S, Norby P, Pryds N, Linderoth S (2015) Creation of high mobility two-dimensional electron gases via strain induced polarization at an otherwise nonpolar complex oxide interface. Nano Lett 15:1849–1854CrossRefGoogle Scholar
  10. 10.
    Chambers SA, Engelhard MH, Shutthanandan V, Zhu Z, Droubay TC, Qiao L, Sushko PV, Feng T, Lee HD, Gustafsson T, Garfunkel E, Shah AB, Zuo JM, Ramasse QM (2010) Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf Sci Rep 65:317–352CrossRefGoogle Scholar
  11. 11.
    Lee SW, Liu YQ, Heo J, Gordon RG (2012) Creation and control of two-dimensional electron gas using Al-based amorphous oxides/SrTiO3 heterostructures grown by atomic layer deposition. Nano Lett 12:4775–4783CrossRefGoogle Scholar
  12. 12.
    Chen YZ, Pryds N, Kleibeuker JE, Koster G, Sun JR, Stamate E, Shen BG, Rijnders G, Linderoth S (2011) Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures. Nano Lett 11:3774–3778CrossRefGoogle Scholar
  13. 13.
    Chen YZ, Bovet N, Kasama T, Gao WW, Yazdi S, Ma C, Pryds N, Linderoth S (2014) Room temperature formation of high-mobility two-dimensional electron gases at crystalline complex oxide interfaces. Adv Mater 26:1462CrossRefGoogle Scholar
  14. 14.
    Kormondy KJ, Posadas AB, Ngo TQ, Lu SR, Goble N, Sweet JJ, Gao XPA, Smith DJ, McCartney MR, Ekerdt JG, Demkov AA (2015) Quasi-two-dimensional electron gas at the epitaxial alumina/SrTiO3 interface: control of oxygen vacancies. J Appl Phys 117:095303CrossRefGoogle Scholar
  15. 15.
    Ngo TQ, Goble NJ, Posadas A, Kormondy KJ, Lu SR, McDaniel MD, Sweet JJ, Smith DJ, Gao XPA, Demkov AA, Ekerdt JG (2015) Quasi-two-dimensional electron gas at the interface of γ-Al2O3/SrTiO3 heterostructures grown by atomic layer deposition. J Appl Phys 118:115303CrossRefGoogle Scholar
  16. 16.
    Rizi MY, Marsik P, Mallett BPP, Dubroka A, Christensen DV, Chen YZ, Pryds N, Bernhard C (2016) Infrared ellipsometry study of the confined electrons in a high-mobility γ-Al2O3/SrTiO3 heterostructure. Europhys Lett 113:47005CrossRefGoogle Scholar
  17. 17.
    Yan H, Zhang ZT, Wang SH, Wei XY, Chen CL, Jin KX (2018) Magnetism control by doping in LaAlO3/SrTiO3 heterointerfaces. ACS Appl Mater Interfaces 10:14209–14213CrossRefGoogle Scholar
  18. 18.
    Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D (2007) Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys Rev B 75:121404CrossRefGoogle Scholar
  19. 19.
    Liu GZ, Qiu J, Jiang YC, Zhao R, Yao JL, Zhao M, Feng Y, Gao J (2016) Light induced suppression of Kondo effect at amorphous LaAlO3/SrTiO3 interface. Appl Phys Lett 109:031110CrossRefGoogle Scholar
  20. 20.
    Yan H, Zhang ZT, Wang SH, Zhang HR, Chen CL, Jin KX (2017) Modulated transport behavior of two-dimensional electron gas at Ni-doped LaAlO3/SrTiO3 heterointerfaces. ACS Appl Mater Interfaces 9:39011–39017CrossRefGoogle Scholar
  21. 21.
    Rastogi A, Pulikkotil JJ, Auluck S, Hossain Z, Budhani RC (2012) Photoconducting state and its perturbation by electrostatic fields in oxide-based two-dimensional electron gas. Phys Rev B 86:075127CrossRefGoogle Scholar
  22. 22.
    Mannhart J, Schlom DG (2010) Oxide interfaces: an opportunity for electronics. Science 327:1607–1611CrossRefGoogle Scholar
  23. 23.
    Park JW, Bogorin DF, Cen C, Felker DA, Zhang Y, Nelson CT, Bark CW, Folkman CM, Pan XQ, Rzchowski MS, Levy J, Eom CB (2010) Creation of a two-dimensional electron gas at an oxide interface on silicon. Nat Commun 1:94CrossRefGoogle Scholar
  24. 24.
    Niu W, Gan YL, Zhang Y, Christensen DV, von Soosten M, Wang XF, Xu YB, Zhang R, Pryds NN, Chen YZ (2017) Suppressed carrier density for the patterned high mobility two-dimensional electron gas at γ-Al2O3/SrTiO3 heterointerface. Appl Phys Lett 111:021602CrossRefGoogle Scholar
  25. 25.
    Lippmaa M, Nakagawa N, Kawasaki M (2000) Dielectric properties of homoepitaxial SrTiO3 thin films grown in the step-flow mode. J Electroceram 4:365CrossRefGoogle Scholar
  26. 26.
    Sakudo T, Unoki H (1971) Dielectric properties of SrTiO3 at low temperatures. Phys Rev Lett 26:851–853CrossRefGoogle Scholar
  27. 27.
    Carrasco J, Illas F, Lopez N, Kotomin EA, Zhukovskii YF, Evarestov RA, Mastrikov YA, Piskunov S, Maier J (2006) First principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3. Phys Rev B 73:064106CrossRefGoogle Scholar
  28. 28.
    Lee SW, Heob J, Gordon RG (2013) Origin of the self-limited electron densities at Al2O3/SrTiO3 heterostructures grown by atomic layer deposition–oxygen diffusion model. Nanoscale 5:8940–8944CrossRefGoogle Scholar
  29. 29.
    Sing M, Berner G, Goß K, Müller A, Ruff A, Wetscherek A, Thiel S, Mannhart J, Pauli SA, Schneider CW, Willmott PR, Gorgoi M, Schäfers F, Claessen R (2009) Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy. Phys Rev Lett 102:176805CrossRefGoogle Scholar
  30. 30.
    Mochizuki S, Fujishiro F, Minami S (2005) Photoluminescence and reversible photo-induced spectral change of SrTiO3. J Phys Condens Matter 17:923–948CrossRefGoogle Scholar
  31. 31.
    Kan D, Terashima T, Kanda R, Masuno A, Tanaka K, Chu S, Kan H, Ishizumi A, Kanemitsu Y, Shimakawa Y, Takano M (2005) Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat Mater 4:816–819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Natural and Applied SciencesNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations