Journal of Materials Science

, Volume 54, Issue 6, pp 4942–4951 | Cite as

5-Fluorouracil-loaded β-cyclodextrin-carrying polymeric poly(methylmethacrylate)-coated samarium ferrite nanoparticles and their anticancer activity

  • M. S. Hariharan
  • R. Sivaraj
  • S. Ponsubha
  • R. Jagadeesh
  • I. V. M. V. EnochEmail author
Materials for life sciences


Drug-loading on magnetic nanoparticles coated with biocompatible polymers are intriguing nanostructures for targeted delivery of anticancer drugs with the application of a magnetic field. In this paper, we report the preparation of SmFeO3 nanoparticles and loading of the anticancer drug 5-fluorouracil on the carrier by forming host–guest complex with β-cyclodextrin. The material and the polymer are characterized using IR and EDX spectroscopic techniques. The nanocarrier formulation shows an enhanced loading and release of the drug. The size and the magnetic properties of the nanoparticles are suitable for cancer drug targeting, i.e., around 50 nm, and the particles show a superparamagnetic behavior. In vitro cytotoxicity studies reveal that the loaded 5-fluorouracil retains its potency and the drug-loaded nanocarrier shows better anticancer activity.



The authors thank the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the funded project (No. 37(2)/14/17/2018-BRNS/37147).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    McBain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:164–180Google Scholar
  2. 2.
    Mushtaq MW, Kanwal F, Batool A, Jamil T, Zia-ul-Haq M, Ija B (2017) Polymer-coated CoFe2O4 nanoassemblies as biocompatible magnetic nanocarriers for anticancer drug delivery. J Mater Sci 52:9282–9293. CrossRefGoogle Scholar
  3. 3.
    Chávez G, Campos CH, Jiménez VA, Torres CC, Díaz C, Salas G, Guzmán L, Alderete JB (2017) Polyamido amine (PAMAM)-grafted magnetic nanotubes as emerging platforms for the delivery and sustained release of silibinin. J Mater Sci 52:9269–9281. CrossRefGoogle Scholar
  4. 4.
    Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y, Murakami T (2000) Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int J Oncol 17:309–315Google Scholar
  5. 5.
    Bao Y, Wen T, Cristina A, Samia S, Khandhar A, Krishnan KM (2016) Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51:513–553. CrossRefGoogle Scholar
  6. 6.
    Williard MA, Kurihara LA, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125–170CrossRefGoogle Scholar
  7. 7.
    Langmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and muscles as imaging agents: considerations and caveats. Nanomedicine 3:703–717CrossRefGoogle Scholar
  8. 8.
    El-Boubbou K (2018) Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation, and delivery. Nanomedicine 13:929–952. CrossRefGoogle Scholar
  9. 9.
    Veish O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304CrossRefGoogle Scholar
  10. 10.
    Choi HS, Lui W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Fragioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170CrossRefGoogle Scholar
  11. 11.
    Enoch IVMV, Sivaraj R, Mohiyuddin S, Gopinath P, Manoharan R (2018) Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release. Appl Nanosci 8:273–284CrossRefGoogle Scholar
  12. 12.
    Dey C, Baishya K, Ghosh A, Goswami MM, Ghosh A, Mandal K (2017) Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. J Magn Magn Mater 427:68–174CrossRefGoogle Scholar
  13. 13.
    Sivaraj R, Rajkumar SDRJ, Enoch IVMV (2018) Folate-molecular encapsulator-tethered biocompatible polymer grafted with magnetic nanoparticles for augmented drug delivery. Artif Cells Nanomed Biotechnol. Google Scholar
  14. 14.
    Sawant VJ, Bamane SR, Shejwal RV, Patil SB (2016) Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin into MCF-7 breast cancer cells. J Magn Magn Mater 417:222–229CrossRefGoogle Scholar
  15. 15.
    Sivaraj R, Beniya S, Helfried R, Nadar MSAM, Enoch IVMV, Kay P (2018) Molecular encapsulator on the surface of magnetic nanoparticles. Controlled drug release from calcium ferrite/cyclodextrin-tethered polymer hybrid. Colloids Surf B 161:347–355CrossRefGoogle Scholar
  16. 16.
    Selvam R, Ramasamy S, Mohiyuddin S, Enoch IVMV, Gopinath P, Filimonov D (2018) Molecular encapsulator-appended poly(vinyl alcohol) shroud on ferrite nanoparticles. Augmented cancer-drug loading and anticancer property. Mater Sci Eng, C 93:125–133CrossRefGoogle Scholar
  17. 17.
    Kevadiya BD, Bade AN, Woldstad C, Edagwa BJ, McMillan JM, Sajja BR, Boska MD, Gendelman HE (2017) Development of europium-doped core-shell silica cobale ferrite functionalized nanoparticles for magnetic resonance imaging. Aca Biomater 49:507–520CrossRefGoogle Scholar
  18. 18.
    Thorat ND, Bohara RA, Tofail SAM, Alothman ZA, Shiddiky MJA, Hossain MSA, Yamauchi Y, Wu KCW (2016) Superparamagnetic gadolinium ferrite nanoparticles with controllable Curie temperature-cancer theranostics for MR-imaging-guided magneto-chemotherapy. Eur J Inorg Chem 28:4586–4597CrossRefGoogle Scholar
  19. 19.
    Aono H, Sato M, Traversa E, Sakamoto M, Sadaoka Y (2001) Design of ceramic materials for chemical sensors: effect of SmFeO3 processing on surface and electrical properties. J Am Chem Soc 84:341–347Google Scholar
  20. 20.
    Bukhari SM, Penwell WD, Giorgi JB (2013) Doped samarium ferrite perovskites as carbon and sulfur resistant anodes for low temperature solid oxide fuel cells. ECS Trans 57:1507–1515CrossRefGoogle Scholar
  21. 21.
    Kaittanis C, Shaffer TM, Ogirala A, Santra S, Perez JM, Chiosis G, Li Y, Josephson L, Grimm J (2014) Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat Commun 5:3384CrossRefGoogle Scholar
  22. 22.
    Sudha N, Sameena Y, Chandrasekaran S, Enoch IVMV, Premnath D (2015) Alteration of the binding strength of dronedarone with bovine serum albumin by β-cyclodextrin: a spectroscopic study. Spectrosc Lett 48:112–119CrossRefGoogle Scholar
  23. 23.
    Natesan S, Sowrirajan C, Dhanaraj P, Enoch IVMV (2014) Capping of silybin with β-cyclodextrin influences its binding with bovine serum albumin: a study by fluorescence spectroscopy and molecular modeling. Bull Korean Chem Soc 35:2114–2122CrossRefGoogle Scholar
  24. 24.
    Yousuf S, Radhika D, Enoch IVMV, Easwaran M (2012) The influence of β-cyclodextrin encapsulation on the binding of 2′-hydroxyflavone with calf thymus. DNA 98:405–412Google Scholar
  25. 25.
    Loftsson T, Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A (2016) Pharmacokinetics of cyclodextrins and drugs after oral and parenteral administration of drug/cyclodextrin complexes. J Pharm Pharmacol 68:544–555CrossRefGoogle Scholar
  26. 26.
    LeRenard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rüfenacht D, Bosman F, Buchegger F, Doelker E (2010) The in vitro performance of magnetic particle-loaded injectable, in situ gelling carriers for the delivery of local hyperthermia. Biomaterials 31:691–705CrossRefGoogle Scholar
  27. 27.
    Gyergyek S, Pahovnik D, Žagar E, Mertelj A, Kostanjšek R, Beković M, Jagodić M, Hofmann H, Makovec D (2018) Nanocomposites comprised of homogeneously dispersed magnetic iron oxide nanoparticles and poly(methyl methacrylate). Beilstein J Nanotechnol 9:1613–1622CrossRefGoogle Scholar
  28. 28.
    Kettel MJ, Heine E, Shaefer K, Moeller M (2017) Chlorhexidine loaded cyclodextrin containing PMMA nanogels as antimicrobial coating and delivery systems. Macromol Biosci 17:1600230CrossRefGoogle Scholar
  29. 29.
    Zheng XF, Lian Q, Yang H, Wang X (2016) Surface molecularly imprinted polymer of chitosan grafted poly (methyl methacrylate) for 5-fluorouracil and controlled release. Sci Rep 6:21409CrossRefGoogle Scholar
  30. 30.
    Aydin RST, Pulat M (2012) 5-Fluoruracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. Google Scholar
  31. 31.
    Thorat ND, Khot VM, Salunkhe AB, Ningthoujam RS, Pawar SH (2013) Functionalization of La0.7Sr0.3MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Colloids Surf B 104:40–47CrossRefGoogle Scholar
  32. 32.
    Bohara RA, Thorat ND, Yadav HM, Pawar SH (2014) One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications. New J Chem 38:2979–2986CrossRefGoogle Scholar
  33. 33.
    Barick KC, Aslam M, Prasad PV, David VP, Bhadur D (2009) Nanoscale assembly of amine functionalized colloidal iron oxide. J Magn Magn Mater 321:1529–1532CrossRefGoogle Scholar
  34. 34.
    Grabnar PA, Kristl J (2011) The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul 28:323–335CrossRefGoogle Scholar
  35. 35.
    Arias JL (2008) Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 13:2340–2369CrossRefGoogle Scholar
  36. 36.
    Ozbas Z, Gurdag G (2016) Synthesis and characterization of 5-fluorouracil-loaded gluteraldehyde cross-linked chitosan hydrogels. J Nat Appl Sci 20:460–467Google Scholar
  37. 37.
    Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y (2013) Acidic extracellular microenvironment and cancer. Cancer Cell Int 13:89–96CrossRefGoogle Scholar
  38. 38.
    Bear JC, Patrick PS, Casson A, Southern P, Lin FY, Powell MJ, Pankhurst QA, Kalber T, Lythgoe M, Parkin IV, Mayes AG (2016) Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection. Sci Rep 6:34271CrossRefGoogle Scholar
  39. 39.
    Gholoobi A, Meshkat Z, Abnous K, Ghayour-Mobarhan M, Ramezani M, Shandiz FH, Verma K, Darroudi M (2017) Biopolymer-mediated synthesis of Fe3O4 nanoparticles and investigation of their in vitro cytotoxicity effects. J Mol Struct 1141:594–599CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NanoscienceKarunya Institute of Technology and SciencesCoimbatoreIndia
  2. 2.Department of ChemistryKarunya Institute of Technology and SciencesCoimbatoreIndia

Personalised recommendations