Advertisement

Journal of Materials Science

, Volume 54, Issue 6, pp 4647–4670 | Cite as

Mechanical characterization by multiscale instrumented indentation of highly heterogeneous materials for braking applications

  • Stephania KossmanEmail author
  • Alain Iost
  • Didier Chicot
  • David Mercier
  • Itziar Serrano-Muñoz
  • Francine Roudet
  • Philippe Dufrénoy
  • Vincent Magnier
  • Anne-Lise Cristol
Composites
  • 145 Downloads

Abstract

This work is focused on the mechanical characterization by multiscale indentation (nano and macro) of a brake pad material, with multiple phases and complex microstructure for applications in the railway industry. Grid nanoindentation tests allowed to identify the mechanical properties of the components in the formulation. The significant difference between constituent’s properties gives a quickly composite response. In parallel, multicyclic macroindentation tests were performed to obtain a composite mechanical response. The properties change according to test locations and configurations of staking phases, due to the high heterogeneity of the brake pad material. The results demonstrated that multiscale indentation tests give a consistent response, which approximates the mechanical properties at different scales. Considering such a very heterogeneous material (broad distribution of properties and particle sizes), the used methodology is appropriate for other heterogeneous complex materials. A multiscale characterization of the mechanical properties is necessary to deal with the problematic of vibrations induced by friction, particularly for brake squeal prediction.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Buryachenko V (2007) Micromechanics of heterogeneous materials. Springer, BerlinGoogle Scholar
  2. 2.
    ASTM D3878-07 (2007) Standard terminology for composite materials. ASTM International.  https://doi.org/10.1520/D3878-16
  3. 3.
    Österle W, Griepentrog M, Gross T, Urban I (2001) Chemical and microstructural changes induced by friction and wear of brakes. Wear 251:1469–1476.  https://doi.org/10.1016/S0043-1648(01)00785-2 Google Scholar
  4. 4.
    Dufrénoy P, Magnier V, Mann R, Cristol A-L, Serrano I (2016) Methodology linking formulation, microstructure and mechanical properties of friction materials. SAE Tech paper.  https://doi.org/10.4271/2016-01-1910 Google Scholar
  5. 5.
    Heussaff A, Dubar L, Tison T, Watremez M, Nunes RF (2012) A methodology for the modelling of the variability of brake lining surfaces. Wear 289:145–159.  https://doi.org/10.1016/j.wear.2012.04.002 Google Scholar
  6. 6.
    Eriksson M, Bergman F, Jacobson S (1999) Surface characterisation of brake pads after running under silent and squealing conditions. Wear 232:163–167.  https://doi.org/10.1016/S0043-1648(99)00141-6 Google Scholar
  7. 7.
    Lee S, Jang H (2018) Effect of plateau distribution on friction instability of brake friction materials. Wear 400:1–9.  https://doi.org/10.1016/j.wear.2017.12.015 Google Scholar
  8. 8.
    Tonazzi D, Massi F, Baillet L, Brunetti J, Berthier Y (2018) Interaction between contact behaviour and vibrational response for dry contact system. Mech Syst Signal Process 110:110–121.  https://doi.org/10.1016/j.ymssp.2018.03.020 Google Scholar
  9. 9.
    Hetzler H, Willner K (2012) On the influence of contact tribology on brake squeal. Tribol Int 46:237–246.  https://doi.org/10.1016/j.triboint.2011.05.019 Google Scholar
  10. 10.
    Tison T, Heussaff A, Massa F, Turpin I, Nunes RF (2014) Improvement in the predictivity of squeal simulations: uncertainty and robustness. J Sound Vib 333:3394–3412.  https://doi.org/10.1016/j.jsv.2014.03.011 Google Scholar
  11. 11.
    Magnier V, Roubin E, Colliat JB, Dufrénoy P (2017) Methodology of porosity modeling for friction pad: consequence on squeal. Tribol Int 109:78–85.  https://doi.org/10.1016/j.triboint.2016.12.026 Google Scholar
  12. 12.
    Magnier V, Naidoo Ramasami D, Brunel JF, Dufrénoy P, Chancelier T (2017) History effect on squeal with a mesoscopic approach to friction materials. Tribol Int 115:600–607.  https://doi.org/10.1016/j.triboint.2017.06.031 Google Scholar
  13. 13.
    Talib RJ, Azimah MAB, Yuslina J, Arif SM, Ramlan K (2008) Analysis on the hardness characteristics of semi-metallic friction materials. Solid State Sci Technol 16:124–129Google Scholar
  14. 14.
    Naidoo Ramasami D, Rejdych G, Chancelier T, Pasquet T (2015) Stiffness distributions of brake pad friction materials using static and dynamic measurement techniques. Proc Inst Mech Eng Part J Automob Eng 229:735–746.  https://doi.org/10.1177/0954407015569585 Google Scholar
  15. 15.
    Mann R, Magnier V, Brunel JF, Brunel F, Dufrénoy P, Henrion M (2017) Relation between mechanical behavior and microstructure of a sintered material for braking application. Wear 386–387:1–16.  https://doi.org/10.1016/j.wear.2017.05.013 Google Scholar
  16. 16.
    Xiao Y, Zhang Z, Yao P, Fan K, Zhou H, Gong T, Zhao L, Deng M (2018) Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol Int 119:585–592.  https://doi.org/10.1016/j.triboint.2017.11.038 Google Scholar
  17. 17.
    Serrano-Muñoz I, Magnier V, Mann R, Dufrénoy P (2017) Original methodology using DIC to characterize friction materials compression behavior. In: Sutton M, Reu PL (eds) International digital imaging correlation society. Springer, Berlin, pp 55–58.  https://doi.org/10.1007/978-3-319-51439-0_13 Google Scholar
  18. 18.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583.  https://doi.org/10.1557/JMR.1992.1564 Google Scholar
  19. 19.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20.  https://doi.org/10.1557/jmr.2004.19.1.3 Google Scholar
  20. 20.
    Fischer-Cripps AC (2011) Nanoindentation testing. In: Nanoindentation. Springer, New York, pp 21–37Google Scholar
  21. 21.
    VanLandingham MR (2003) Review of instrumented indentation. J Res Natl Inst Stand Technol 108:249–265Google Scholar
  22. 22.
    Constantinides G, Ravi Chandran KS, Ulm F-J, Van Vliet KJ (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng A 430:189–202.  https://doi.org/10.1016/j.msea.2006.05.125 Google Scholar
  23. 23.
    Ulm F-J, Vadamme M, Bobko C, Ortega A, Tai K, Ortiz C (2007) Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J Am Ceram Soc 90:2677–2692.  https://doi.org/10.1111/j.1551-2916.2007.02012.x Google Scholar
  24. 24.
    Randall NX, Vandamme M, Ulm F-J (2009) Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. J Mater Res 24:679–690.  https://doi.org/10.1557/jmr.2009.0149 Google Scholar
  25. 25.
    Nemecek J (2012) Nanoindentation based analysis of heterogeneous structural materials. In: Nemecek J (ed) Nanoindentation in materials science. InTech.  https://doi.org/10.5772/50968
  26. 26.
    Amanieu H-Y, Rosato D, Sebastiani M, Massimi F, Lupascu DC (2014) Mechanical property measurements of heterogeneous materials by selective nanoindentation: application to LiMn2O4 cathode. Mater Sci Eng A 593:92–102.  https://doi.org/10.1016/j.msea.2013.11.044 Google Scholar
  27. 27.
    Sebastiani M, Moscatelli R, Ridi F, Baglioni P, Carassiti F (2016) High-resolution high-speed nanoindentation mapping of cement pastes: unravelling the effect of microstructure on the mechanical properties of hydrated phases. Mater Des 97:372–380.  https://doi.org/10.1016/j.matdes.2016.02.087 Google Scholar
  28. 28.
    Vasconcelos LS, Xu R, Li J, Zhao K (2016) Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries. Extreme Mech Lett 9:495–502.  https://doi.org/10.1016/j.eml.2016.03.002 Google Scholar
  29. 29.
    Guicciardi S, Melandri C, Silvestroni L, Sciti D (2008) Indentation grid analysis of nanoindentation bulk and in situ properties of ceramic phases. J Mater Sci 43:4348–4352.  https://doi.org/10.1007/s10853-008-2657-3 Google Scholar
  30. 30.
    Parameswaran K (1971) Phase equilibrium and thermodynamic study of the iron-copper-carbon system. Master Dissertation. University of Missouri-RollaGoogle Scholar
  31. 31.
    Hasebe M, Nishizawa T (1980) Calculation of phase diagrams of the iron-copper and cobalt-copper systems. Calphad 4:83–100.  https://doi.org/10.1016/0364-5916(80)90026-7 Google Scholar
  32. 32.
    Ashby MF (1999) Materials selection in mechanical design. Butterworth-Heinemann, OxfordGoogle Scholar
  33. 33.
    Properties and characteristics of graphite for industrial applications. Entegris, Inc, 2015. https://www.entegris.com/content/dam/web/resources/manuals-and-guides/manual-properties-and-characteristics-of-graphite-109441.pdf
  34. 34.
    Bannikov VV, Shein IR, Ivanovskii AL (2012) Mechanical properties and electronic structure of zircon: Ab Inito FLAPW-GGA calculations. Inorg Mater Appl Res 3:7–10.  https://doi.org/10.1134/S2075113312010029 Google Scholar
  35. 35.
    Chakoumakos BC, Oliver WC, Lumpkin GR, Ewing RC (1991) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: I. In situ α-decay event damage. Radiat Eff Defects Solids 118:393–403.  https://doi.org/10.1080/10420159108220764 Google Scholar
  36. 36.
    Sirdeshmukh DB, Subhadra KG (1975) Note on the elastic properties of zircon. J Appl Phys 46:3681–3682.  https://doi.org/10.1063/1.322100 Google Scholar
  37. 37.
    Oliver WC, McCallum JC, Chakoumakos BC, Boatner LA (1994) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: II. Pb-ion implantation damage. Radiat Eff Defects Solids 132:131–141.  https://doi.org/10.1080/10420159408224303 Google Scholar
  38. 38.
    Xiang H, Feng Z, Li Z, Zhou Y (2015) Theoretical investigations on mechanical and thermal properties of MSiO4 (M = Zr, Hf). J Mater Res 30:2030–2039.  https://doi.org/10.1557/jmr.2015.172 Google Scholar
  39. 39.
    Rendtorff NM, Grasso S, Hu C, Suarez G, Aglietti E, Sakka Y (2012) Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering. Ceram Int 38:1793–1799.  https://doi.org/10.1016/j.ceramint.2011.10.001 Google Scholar
  40. 40.
    Mercier D, Vanhumbeeck J-F, Caruso M, Eyndes XV (2017) Caractérisation mécanique par nanoindentation d’un revêtement composite à matrice nickel électrodéposé. Matér Tech 105:106.  https://doi.org/10.1051/mattech/2017014 Google Scholar
  41. 41.
    Munro RG (1997) Materials properties of a sintered α-SiC. J Phys Chem Ref Data 26:1195–1203.  https://doi.org/10.1063/1.556000 Google Scholar
  42. 42.
    CRC Materials Science and Engineering Handbook, Third Edition. CRC Press (2000). Available at: https://www.crcpress.com/CRC-Materials-Science-and-Engineering-Handbook-Third-Edition/Shackelford-Alexander/p/book/9780849326967. Accessed 30 June 2017
  43. 43.
    Pethica JB, Oliver WC (1987) Tip surface interactions in STM and AFM. Phys Scr T19, 61–66Google Scholar
  44. 44.
    Oliver WC, Pethica JB (1989) Method for continuous determination of the elastic stiffness of contact between two bodies, US4848141AGoogle Scholar
  45. 45.
    Kossman S, Coorevits T, Iost A, Chicot D (2017) A new approach of the Oliver and Pharr model to fit the unloading curve from instrumented indentation testing. J Mater Res 32:2230–2240.  https://doi.org/10.1557/jmr.2017.120 Google Scholar
  46. 46.
    ISO 14577-4: 2007 (2007) Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 4: Test method for metallic and non-metallic coatingsGoogle Scholar
  47. 47.
    Application note: indentation rules of thumb. Keysight Technologies. https://literature.cdn.keysight.com/litweb/pdf/5990-5700EN.pdf
  48. 48.
    Mercier D, Vanhumbeec J-F, Carusoa M, Vanden X (2016) Microstructural and mechanical characterization of electroplated nickel matrix coatings. Presented at the XXXI International Conference on Surface Modification Technologies (SMT31), Mons, BelgiumGoogle Scholar
  49. 49.
    Mercier D (2017) TriDiMap: Matlab functions to plot 2D and 3D maps from nanoindentation tests.  https://doi.org/10.13140/RG.2.2.25088.89600
  50. 50.
    Mata M, Anglada M, Alcalá J (2002) Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J Mater Res 17:964–976.  https://doi.org/10.1557/JMR.2002.0144 Google Scholar
  51. 51.
    Mata M, Casals O, Alcalá J (2006) The plastic zone size in indentation experiments: the analogy with the expansion of a spherical cavity. Int J Solids Struct 43:5994–6013.  https://doi.org/10.1016/j.ijsolstr.2005.07.002 Google Scholar
  52. 52.
    Friction Materials | Imerys | Graphite & Carbon. Available at: http://www.imerys-graphite-and-carbon.com/markets/engineering-materials/friction-materials/. Accessed 23 Jan 2018
  53. 53.
    Rahmoun K, Iost A, Keryvin V, Guillemot G, Sari NEC (2009) A multilayer model for describing hardness variations of aged porous silicon low-dielectric-constant thin films. Thin Solid Films 518:213–221.  https://doi.org/10.1016/j.tsf.2009.07.040 Google Scholar
  54. 54.
    Abib HY, Iost A, Montagne A, Rahmoun K, Ayachi B, Vilcot JP (2017) Investigations on the mechanical properties of the elementary thin films composing a CuIn1−x GaxSe2 solar cell using the nanoindentation technique. Thin Solid Films 633:71–75.  https://doi.org/10.1016/j.tsf.2016.11.013 Google Scholar
  55. 55.
    Markov KZ (2000) Elementary micromechanics of heterogeneous media. In: Markov K, Preziosi L (eds) Heterogeneous media. Modeling and simulation in science, engineering and technology. Birkhäuser, Boston.  https://doi.org/10.1007/978-1-4612-1332-1_1 Google Scholar
  56. 56.
    Marteau J, Bigerelle M (2017) Toward an understanding of the effect of surface roughness on instrumented indentation results. J Mater Sci 52:7239–7255.  https://doi.org/10.1007/s10853-017-0961-5 Google Scholar
  57. 57.
    Conté N The influence of surface roughness on Instrumented Indentation Testing (IIT). Available at: https://www.anton-paar.com/corp-en/products/applications/the-influence-of-surface-roughness-on-instrumented-indentation-testing-iit/. Accessed 21 Jan 2018
  58. 58.
    Wei Y, Gao X, Liang S (2016) Nanoindentation-based study of the micro-mechanical properties, structure, and hydration degree of slag-blended cementitious materials. J Mater Sci 51:3349–3361.  https://doi.org/10.1007/s10853-015-9650-4 Google Scholar
  59. 59.
    Ulm F-J, Vandamme M, Jennings H, Vanzo J, Bentivegna M, Krakowiak K, Constantinides G, Bobko C, Van Vliet K (2010) Does microstructure matter for statistical nanoindentation techniques? Cem Concr Compos 32:92–99.  https://doi.org/10.1016/j.cemconcomp.2009.08.007 Google Scholar
  60. 60.
    Čech J, Haušild P, Materna A, Matějíček J (2017) Approche statistique pour identifier les propriétés mécaniques des phases individuelles à partir de données d’indentation. Matér Tech 105:105.  https://doi.org/10.1051/mattech/2016041 Google Scholar
  61. 61.
    Joslin DL, Oliver WC (1990) A new method for analyzing data from continuous depth-sensing microindentation tests. J Mater Res 5:123–126.  https://doi.org/10.1557/JMR.1990.0123 Google Scholar
  62. 62.
    Luo J, Stevens R (1999) Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics. Ceram Int 25:281–286.  https://doi.org/10.1016/S0272-8842(98)00037-6 Google Scholar
  63. 63.
    Ren XJ, Hooper RM, Griffiths C, Henshall JL (2003) Indentation size effect in ceramics: correlation with H/E. J Mater Sci Lett 22:1105–1106.  https://doi.org/10.1023/A:1024947210604 Google Scholar
  64. 64.
    Bull SJ, Page TF, Yoffe EH (1989) An explanation of the indentation size effect in ceramics. Philos Mag Lett 59:281–288.  https://doi.org/10.1080/09500838908206356 Google Scholar
  65. 65.
    Feng G, Budiman AS, Nix WD, Tamura N, Patel JR (2008) Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction. J Appl Phys 104:043501.  https://doi.org/10.1063/1.2966297 Google Scholar
  66. 66.
    Chicot D, Puchi-Cabrera ES, Iost A, Staia M, Decoopman X, Roudet F, Louis G (2013) Analysis of indentation size effect in copper and its alloys. Mater Sci Technol 29:868–876.  https://doi.org/10.1179/1743284713Y.0000000213 Google Scholar
  67. 67.
    Bull SJ (2003) On the origins and mechanisms of the indentation size effect. Z Für Met 94:787–792Google Scholar
  68. 68.
    Durst K, Backes B, Göken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater 52:1093–1097.  https://doi.org/10.1016/j.scriptamat.2005.02.009 Google Scholar
  69. 69.
    Coy E, Yate L, Kabacińska Z, Jancelewicz M, Jurga S, Iatsunskyi I (2016) Topographic reconstruction and mechanical analysis of atomic layer deposited Al2O3/TiO2 nanolaminates by nanoindentation. Mater Des 111:584–591.  https://doi.org/10.1016/j.matdes.2016.09.030 Google Scholar
  70. 70.
    Waddad Y, Magnier V, Dufrénoy P, De Saxcé G (2017) A new contact model for multilayered solids with rough surfaces. Tribol Lett 65:155.  https://doi.org/10.1007/s11249-017-0941-6 Google Scholar
  71. 71.
    Jönsson B, Hogmark S (1984) Hardness measurements of thin films. Thin Solid Films 114:257–269Google Scholar
  72. 72.
    Korsunsky AM, McGurk MR, Bull SJ, Page TF (1998) On the hardness of coated systems. Surf Coat Technol 99:171–183.  https://doi.org/10.1016/s0257-8972(97)00522-7 Google Scholar
  73. 73.
    Puchi-Cabrera ES, Staia MH, Iost A (2015) Modeling the composite hardness of multilayer coated systems. Thin Solid Films 578:53–62.  https://doi.org/10.1016/j.tsf.2015.01.070 Google Scholar
  74. 74.
    Mercier D, Mandrillon V, Verdier M, Brechet Y (2011) Mesure de module d’Young d’un film mince à partir de mesures expérimentales de nanoindentation réalisées sur des systèmes multicouches. Matér Tech 99:169–178.  https://doi.org/10.1051/mattech/2011029 Google Scholar
  75. 75.
    Cleymand F, Ferry O, Kouitat R, Billard A, von Stebut J (2005) Influence of indentation depth on the determination of the apparent Young’s modulus of bi-layer material: experiments and numerical simulation. Surf Coat Technol 200:890–893.  https://doi.org/10.1016/j.surfcoat.2005.02.086 Google Scholar
  76. 76.
    Puchi-Cabrera ES, Staia MH, Iost A (2015) A description of the composite elastic modulus of multilayer coated systems. Thin Solid Films 583:177–193.  https://doi.org/10.1016/j.tsf.2015.02.078 Google Scholar
  77. 77.
    Chudoba T, Schwarzer N, Richter F (2002) Steps towards a mechanical modeling of layered systems. Surf Coat Technol 154:140–151.  https://doi.org/10.1016/S0257-8972(02)00016-6 Google Scholar
  78. 78.
    Chicot D, Puchi-Cabrera ES, Aumaitre R, Bouscarrat G, Dublanche-Tixier C, Roudet F, Staia MH (2012) Elastic modulus of TiHfCN thin films by instrumented indentation. Thin Solid Films 522:304–313.  https://doi.org/10.1016/j.tsf.2012.08.022 Google Scholar
  79. 79.
    Fretigny C, Chateauminois A (2007) Solution for the elastic field in a layered medium under axisymmetric contact loading. J Phys Appl Phys 40:5418–5426Google Scholar
  80. 80.
    Cai X, Bangert H (1995) Hardness measurements of thin films-determining the critical ratio of depth to thickness using FEM. Thin Solid Films 264:59–71.  https://doi.org/10.1016/0040-6090(95)06569-5 Google Scholar
  81. 82.
    Gouldstone A, Chollacoop N, Dao M, Li J, Minore AM, Shen YL (2007) Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater 55:4015–4039.  https://doi.org/10.1016/j.actamat.2006.08.044 Google Scholar
  82. 81.
    Chudoba T (2006) Measurement of hardness and Young’s modulus by nanoindentation. In: Cavaleiro A, De Hosson JTM (eds) Nanostructured coatings. Springer, New York, pp 216–260.  https://doi.org/10.1007/978-0-387-48756-4_6
  83. 83.
    Pereyra R (2005) Characterization of indentation-induced ‘particle crowding’ in metal matrix composites. Int J Damage Mech 14:197–213.  https://doi.org/10.1177/1056789505048603 Google Scholar
  84. 84.
    Barsoum MW, Murugaiah A, Kalidindi SR, Zhen T, Gogotsi Y (2004) Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42:1435–1445.  https://doi.org/10.1016/j.carbon.2003.12.090 Google Scholar
  85. 85.
    Field JS, Swain MV (1996) The indentation characterisation of the mechanical properties of various carbon materials: glassy carbon, coke and pyrolytic graphite. Carbon 34:1357–1366.  https://doi.org/10.1016/S0008-6223(96)00071-1 Google Scholar
  86. 86.
    Giannakopoulos AE, Suresh S (1999) Determination of elastoplastic properties by instrumented sharp indentation. Scr Mater 40:1191–1198.  https://doi.org/10.1016/S1359-6462(99)00011-1 Google Scholar
  87. 87.
    Cheng Y-T, Cheng C-M (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Rep 44:91–149.  https://doi.org/10.1016/j.mser.2004.05.001 Google Scholar
  88. 88.
    Futami T, Ohira M, Muto H, Sakai M (2008) Indentation contact behavior of copper-graphite particulate composites: correlation between the contact parameters and the electrical resistivity. Carbon 46:671–678.  https://doi.org/10.1016/j.carbon.2008.01.023 Google Scholar
  89. 89.
    Sakai M, Nakano Y (2004) Instrumented pyramidal and spherical indentation of polycrystalline graphite. J Mater Res 19:228–236.  https://doi.org/10.1557/jmr.2004.19.1.228 Google Scholar
  90. 90.
    Nohava J, Mušálek R, Matějíček J, Vilémová M (2014) A contribution to understanding the results of instrumented indentation on thermal spray coatings—case study on Al2O3 and stainless steel. Surf Coat Technol 240:243–249.  https://doi.org/10.1016/j.surfcoat.2013.12.033 Google Scholar
  91. 91.
    Perriot A, Barthel E (2004) Elastic contact to a coated half-space: effective elastic modulus and real penetration. J Mater Res 19:600–608.  https://doi.org/10.1557/jmr.2004.19.2.600 Google Scholar
  92. 92.
    Hartley M, McEnaney (1996) In: Proceedings of a graphite moderator lifecycle behaviour, bath, United Kingdom, International Atomic Energy Agency, pp 263–274Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Lille, FRE 3723 LML Laboratoire de Mécanique de LilleVilleneuve d’AscqFrance
  2. 2.Arts et Métiers ParisTech, MSMPLilleFrance
  3. 3.Université de Lille, Laboratoire de Génie Civil et géo-EnvironnementVilleneuve d’AscqFrance
  4. 4.CRM GroupLiègeBelgium

Personalised recommendations