Journal of Materials Science

, Volume 54, Issue 5, pp 4433–4443 | Cite as

Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy

  • Rajesh K. Mishra
  • P. P. Sahay
  • Rohit R. ShahiEmail author


The present report describes phase formation, magnetic and corrosion behavior of the AlCrFeMnNiTi high entropy alloy (HEA) synthesized through mechanical alloying. Simple solid solution of FCC and BCC phases are evolved after 25 h of MA. DSC analysis confirms that the synthesized phases of AlCrFeMnNiTi HEA are stable up to 550 °C and a re-crystallization is occurred at temperature greater than 550 °C. In order to investigate the effect of annealing on phase formation and magnetic characteristics, the synthesized HEA was annealed at 700 °C for 1 h and found that the volume fraction of BCC phase decreased. The synthesized HEA shows better ferromagnetic behavior with Ms = 17.55 emu/g and Hc = 153.8 Oe as compared to some of the recently reported HEAs and previously reported CrFeMnNiTi HEA by us. Moreover, corrosion behavior of the annealed AlCrFeMnNiTi high entropy alloy in 0.5 M and 1 M NaCl solution is also investigated. It is found that the annealed HEA shows good corrosion resistance in 0.5 M NaCl solution due to the presence of Al.



The authors gratefully acknowledge the financial support received by INSPIRE Project (IFA-12-PH-43) Department of Science and Technology, New Delhi, India. The authors also acknowledge CIR MNNIT Allahabad and IIT Roorkee India for providing their characterization facilities.

Supplementary material

10853_2018_3153_MOESM1_ESM.tif (547 kb)
Fig. S1 Le-bail fitting of XRD profile (through Jana 2006 software) (a) as synthesized (b) annealed AlCrFeMnNiTi HEA (TIFF 546 kb)


  1. 1.
    Huang KH, Yeh JW (1996) A study on multicomponent alloy systems containing equal mole elements. M.S. thesis, National Tsing Hua University, HsinchiGoogle Scholar
  2. 2.
    Yeh JW, Chen SK, Lin SJ et al (2004) Nanostructured high entropy alloys with multiple elements: novel alloy design concept and outcomes. Adv Eng Mater 6:299–303CrossRefGoogle Scholar
  3. 3.
    Yeh JW (2006) Recent progress in high entropy alloys. Ann chim-Sci Mater 31:633–648CrossRefGoogle Scholar
  4. 4.
    Tsai MH, Yeh JW (2014) High-entropy alloy: a critical review. Mater Res Lett 2(3):107–123CrossRefGoogle Scholar
  5. 5.
    Tsai MH, Wang CW, Tsai CW et al (2011) Thermal stability and performance of NbSiTaTiZr high entropy alloy barrier for copper metallization. J Electrochem Soc 158:H1161–H1165CrossRefGoogle Scholar
  6. 6.
    Fu Z, Chen W, Xiao M et al (2013) Fabrication and properties of naoncrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater Des 44:535–539CrossRefGoogle Scholar
  7. 7.
    Chuang MH, Tsai MH, Wang WR et al (2011) Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high entropy alloy. Acta Mater 59:6308–6317CrossRefGoogle Scholar
  8. 8.
    Yeh JW (2013) Alloy design strategies and future trends in high entropy alloys. JOM 65:1759–1771CrossRefGoogle Scholar
  9. 9.
    Cheng KH, Lai CH, Lin SJ et al (2006) Recent progress in multi-element alloy and nitride coatings sputtered from high entropy alloy targets. Ann Chim-Sci Mat 31:723–736CrossRefGoogle Scholar
  10. 10.
    Chen YY, Duval T, Hong UT et al (2007) Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288°C high purity water. Mater Lett 61:2692–2696CrossRefGoogle Scholar
  11. 11.
    Singh S, Wanderka N, Murty BS et al (2011) Decomposition in multi-component AlCoCrCuFeNi high entropy alloy. Acta Mater 59:182–190CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Zuo TT, Tang Z et al (2014) Microstructures and properties of high entropy alloys. Prog Mater Sci 61:1–93CrossRefGoogle Scholar
  13. 13.
    Yeh JW, Chang SY, Hong YD et al (2007) Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal element. Mater Chem Phys 103:41–46CrossRefGoogle Scholar
  14. 14.
    Li P, Wang A, Liu CT (2017) A ductile high entropy alloy with attractive magnetic properties. J Alloys Compd 694:55–60CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Zuo TT, Cheng YQ et al (2013) High entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci Rep 3:1455–1461CrossRefGoogle Scholar
  16. 16.
    Yu PF, Zhang LJ, Chen H et al (2016) The high entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high pressure sintering. Intermetallics 70:82–87CrossRefGoogle Scholar
  17. 17.
    Zuo TT, Gao MC, Ouyang L et al (2017) Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater 130:10–18CrossRefGoogle Scholar
  18. 18.
    Zhang K, Fu Z (2012) Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys. Intermetallics 28:34–39CrossRefGoogle Scholar
  19. 19.
    Zuo TT, Li RB, Ren XJ et al (2014) Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J Magn Magn Mater 371:60–68CrossRefGoogle Scholar
  20. 20.
    Mishra RK, Shahi RR (2018) Magnetic characteristics of high entropy alloys. In: Panwar N (ed) Magnetism and magnetic materials. IntechOpen, Rijeka, pp 67–80Google Scholar
  21. 21.
    Lucas MS, Mauger L, Munoz JA et al (2011) Magnetic and vibrational properties of high entropy alloys. J Appl Phys 109:07E307CrossRefGoogle Scholar
  22. 22.
    Mishra RK, Shahi RR (2017) Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM(M = Mn, Co) high entropy alloys. J Magn Magn Mater 442:218–223CrossRefGoogle Scholar
  23. 23.
    Shi Y, Yang B, Liaw PK (2017) Corrosion resistant high entropy alloys: a review. Metals 7(2):43–61CrossRefGoogle Scholar
  24. 24.
    Kao YF, Chen SK, Chen TJ et al (2011) Electrical, magnetic and Hall properties of AlxCoCrFeNi high entropy alloys. J Alloys Compd 509:1607–1614CrossRefGoogle Scholar
  25. 25.
    Yang X, Zhang Y (2012) Prediction of high entropy stabilized solid solution in multi-component alloys. Mater Chem Phys 132:233–238CrossRefGoogle Scholar
  26. 26.
    Manzoni A, Daoud H, Mondal S et al (2013) Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc. J Alloys Compd 552:430–436CrossRefGoogle Scholar
  27. 27.
    Manzoni A, Daoud H, Völkl R et al (2013) Phase separation in equiatomic AlCoCrFeNi high entropy alloy. Ultramicroscopy 132:212–215CrossRefGoogle Scholar
  28. 28.
    Tsai MH, Yeh JW, Gan JY (2008) Diffusion barrier properties of AlMoNbSiTaTiVZr high entropy alloy layer between copper and silicon. Thin Solid Films 516:5527–5530CrossRefGoogle Scholar
  29. 29.
    Wang YP, Li BS, Fu HZ (2009) Solid solution or intermetallics in a high entropy alloy. Adv Eng Mater 11:641–644CrossRefGoogle Scholar
  30. 30.
    Tsai MH, Yuan H, Cheng G et al (2013) Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics 33:81–86CrossRefGoogle Scholar
  31. 31.
    Tsai MH, Yuan H, Cheng G et al (2013) Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high entropy alloy. Intermetallics 32:329–336CrossRefGoogle Scholar
  32. 32.
    Tung CC, Yeh JW, Shun TT et al (2007) On the elemental effect of AlCoCrCuFeNi high entropy alloy system. Mater Lett 61:1–5CrossRefGoogle Scholar
  33. 33.
    Senkov ON, Scott JM, Senkova SV et al (2011) Microstructure and room temperature properties of a high entropy TaNbHfZrTi alloy. J Alloys Compd 509:6043–6048CrossRefGoogle Scholar
  34. 34.
    Mary SJ, Nagalakshmi R, Rajendran S et al (2014) High entropy alloy and corrosion resistance—a birds’s eye view. Eur Chem Bull 12:1031–1035Google Scholar
  35. 35.
    Tang Z, Huang L, He W et al (2014) Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16:895–911CrossRefGoogle Scholar
  36. 36.
    Hsu YJ, Chiang WC, Wu JK (2005) Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys 92:112–117CrossRefGoogle Scholar
  37. 37.
    Lin CM, Tsai HL, Bor HY (2010) Effect of aging treatment on microstructure and properties of high entropy Cu0.5CoCrFeNi alloy. Intermetallics 18:1244–1250CrossRefGoogle Scholar
  38. 38.
    Chou YL, Wang YC, Yeh JW et al (2010) Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.1Mo0.1 in chloride-containing sulphate solutions. Corros Sci 52:3481–3491CrossRefGoogle Scholar
  39. 39.
    Chou YL, Yeh JW, Shih HC (2011) Effect of Molybdenum on the pitting resistance of Co1.5CrFeNi1.5Ti0.5Mox alloys in chloride solutions. Corrosion 67(8):085002-1–085002-6CrossRefGoogle Scholar
  40. 40.
    Kao YF, Lee TD, Chen SK et al (2010) Electrochemical passive properties of AlxCoCrFeNi (x = 0,0.25,0.50,1.00) alloys in sulfuric acid. Corros Sci 52:1026–1034CrossRefGoogle Scholar
  41. 41.
    Li BY, Peng K, Hu AP et al (2013) Structure and properties of FeCoNiCrCu0.5Alx high-entropy alloy. Trans Nonferrous Met Soc China 23:735–741CrossRefGoogle Scholar
  42. 42.
    Zhang JJ, Yin XL, Dong Y et al (2014) Corrosion properties of AlxCoCrFeNiTi0.5 high entropy alloys in 0.5M H2SO4 aqueous solution. Mater Res Innov 18:754–760Google Scholar
  43. 43.
    Ren B, Liu ZX, Li DM et al (2012) Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution. Mater Corros 63:828–834CrossRefGoogle Scholar
  44. 44.
    Qiu Y, Gibson MA, Fraser HL et al (2015) Corrosion characteristics of high entropy alloys. Mater Sci Technol 31:1233–1235CrossRefGoogle Scholar
  45. 45.
    Cullity BD, Stock SR (2014) Elements of X-ray diffraction, 3rd edn. Pearson Education Ltd, LondonGoogle Scholar
  46. 46.
    Nong ZS, Zhu JC, Zhao RD (2017) Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys. Intermetallics 86:134–146CrossRefGoogle Scholar
  47. 47.
    Shahi RR, Yadav TP, Shaz MA et al (2008) Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture. Int J Hydrog Energy 33:6188–6194CrossRefGoogle Scholar
  48. 48.
    Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829CrossRefGoogle Scholar
  49. 49.
    Zhang K, Fu Z (2012) Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high entropy alloys. Intermetallics 22:24–32CrossRefGoogle Scholar
  50. 50.
    Guo S, Ng C, Lu J et al (2011) Effect of valance electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys 109:103505CrossRefGoogle Scholar
  51. 51.
    Tsai MH, Chang KC, Li JH et al (2016) A second criterion for sigma phase formation in high entropy alloy. Mater Res Lett 4(2):90–95CrossRefGoogle Scholar
  52. 52.
    Mishra RK, Shahi RR (2018) Effect of annealing conditions and temperatures on phase formation and magnetic behavior of CrFeMnNiTi high entropy alloy. J Magn Magn Mater 465:169–175CrossRefGoogle Scholar
  53. 53.
    Wang XF, Zhang Y, Qiao Y et al (2007) Novel microstructure and properties of multicomponet CoCrCuFeNiTix alloys. Intermetallics 15:357–362CrossRefGoogle Scholar
  54. 54.
    Qiu XW, Zhang YP, Liu CG (2014) Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings. J Alloys Compd 585:282–286CrossRefGoogle Scholar
  55. 55.
    Ye Q, Feng K, Li Z et al (2017) Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl Surf Sci 396:1420–1426CrossRefGoogle Scholar
  56. 56.
    Qiu XW (2013) Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy. J Alloys Compd 555:246–249CrossRefGoogle Scholar
  57. 57.
    Ismail KM, Fathi AM, Badawy WA (2004) Effect of Nickel content on the corrosion and passivation of Copper–Nickel alloys in sodium sulphate solutions. Corrosion 60:795–803CrossRefGoogle Scholar
  58. 58.
    Zinola CF, Luna AMC (1995) The inhibition of Ni corrosion in H2SO4 solutions containing simple non-saturated substances. Corros Sci 37:1919–1929CrossRefGoogle Scholar
  59. 59.
    Hurtado MRF, Sumodjo PTA, Benedetti AV (2003) Electrochemical studies with a Cu-5 wt%Ni alloy in 0.5 M H2 SO4. Electrochim Acta 48:2791–2798CrossRefGoogle Scholar
  60. 60.
    Qiu XW, Liu CG (2013) Microstructure and properties of Al2CrFeCoCuTiNix high entropy alloys prepared by laser cladding. J Alloys Compd 553:216–220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations