Journal of Materials Science

, Volume 54, Issue 5, pp 4423–4432 | Cite as

High-performance copper reinforced with dispersed nanoparticles

  • Gongcheng Yao
  • Chezheng Cao
  • Shuaihang Pan
  • Ting-Chiang Lin
  • Maximilian Sokoluk
  • Xiaochun LiEmail author


Copper (Cu) has high electrical conductivity and is widely used for many industrial applications. However, pure Cu is very soft and improving the mechanical properties of Cu comes at the great expense of electrical and thermal conductivity. In this work, high-performance Cu with superior mechanical properties and reasonable electrical/thermal conductivity was fabricated using a scalable two-step method. First, Cu micro-powders with uniformly dispersed tungsten carbide (WC) nanoparticles were created by a molten salt-assisted self-incorporation process. A bulk nanocomposite was then obtained by melting the powders under pressure. The as-solidified Cu with 40 vol% uniformly dispersed WC nanoparticles exhibits high hardness, a yield strength over 1000 MPa, a Young’s modulus of over 250 GPa, and reasonable electrical and thermal conductivity.



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. We thank C. Linsley at University of California, Los Angeles for proofreading the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Murashkin MY, Sabirov I, Sauvage X, Valiev RZ (2016) Nanostructured Al and Cu alloys with superior strength and electrical conductivity. J Mater Sci 51:33–49. CrossRefGoogle Scholar
  2. 2.
    Wang YA, Li JX, Yan Y, Qiao LJ (2012) Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy. Tribol Int 50:26–34CrossRefGoogle Scholar
  3. 3.
    Zawrah MF, Zayed HA, Essawy RA, Nassar AH, Taha MA (2013) Preparation by mechanical alloying, characterization and sintering of Cu–20 wt% Al2O3 nanocomposites. Mater Des 46:485–490CrossRefGoogle Scholar
  4. 4.
    Watanabe H, Kunimine T, Watanabe C, Monzen R, Todaka Y (2018) Tensile deformation characteristics of a Cu–Ni–Si alloy containing trace elements processed by high-pressure torsion with subsequent aging. Mater Sci Eng A 730:10–15CrossRefGoogle Scholar
  5. 5.
    Copper Facts. Accessed 6 Mar 2018
  6. 6.
    Ma J, Huang F, Huang L, Geng Z, Ning H, Han Z (2002) Trends and development of copper alloys for lead frame. J Funct Mater 33:1–4Google Scholar
  7. 7.
    Ledbetter HM, Naimon ER (1974) Elastic properties of metals and alloys. II. Copper. J Phys Chem Ref Data 3:897–935CrossRefGoogle Scholar
  8. 8.
    Bhaskar MS, Abinandanan TA (2018) Effect of different solute diffusivities on precipitate coarsening in ternary alloys. Comput Mater Sci 146:73–83CrossRefGoogle Scholar
  9. 9.
    Chen X, Jiang F, Jiang J, Xu P, Tong M, Tang Z (2018) Precipitation, recrystallization, and evolution of annealing twins in a Cu–Cr–Zr alloy. Metals 8:227CrossRefGoogle Scholar
  10. 10.
    Fang DR, Tian YZ, Duan QQ, Wu SD, Zhang ZF, Zhao NQ, Li JJ (2011) Effects of equal channel angular pressing on the strength and toughness of Al–Cu alloys. J Mater Sci 46:5002–5008. CrossRefGoogle Scholar
  11. 11.
    Shaarbaf M, Toroghinejad MR (2008) Nano-grained copper strip produced by accumulative roll bonding process. Mater Sci Eng A 473:28–33CrossRefGoogle Scholar
  12. 12.
    Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426CrossRefGoogle Scholar
  13. 13.
    Ellis DL, Michal GM, Orth NW (1990) Production and processing of Cu–Cr–Nb alloys. Scr Metall Mater 24:885–890CrossRefGoogle Scholar
  14. 14.
    Kim JH, Yun JH, Park YH, Cho KM, Choi ID, Park IM (2007) Manufacturing of Cu–TiB2 composites by turbulent in situ mixing process. Mater Sci Eng A 449–451:1018–1021CrossRefGoogle Scholar
  15. 15.
    Chen L-Y, Xu J-Q, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J-M, Mathaudhu S, Li X-C (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543CrossRefGoogle Scholar
  16. 16.
    Pierson HO (1996) Handbook of refractory carbides and nitrides: properties, characteristics, processing and apps. William Andrew, NorwichGoogle Scholar
  17. 17.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Ichikawa K, Achikita M (1993) Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting. Mater Trans JIM 34:718–724CrossRefGoogle Scholar
  19. 19.
    Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380:378–383CrossRefGoogle Scholar
  20. 20.
    Stobrawa JP, Rdzawski ZM (2009) Characterisation of nanostructured copper–WC materials. J Achiev Mater Manuf Eng 32:171–178Google Scholar
  21. 21.
    Akbulut H, Hatipoglu G, Algul H, Tokur M, Kartal M, Uysal M, Cetinkaya T (2015) Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition. Surf Coat Technol 284:344–352CrossRefGoogle Scholar
  22. 22.
    Gu D, Shen Y (2007) Influence of reinforcement weight fraction on microstructure and properties of submicron WC–Co p/Cu bulk MMCs prepared by direct laser sintering. J Alloys Compd 431:112–120CrossRefGoogle Scholar
  23. 23.
    Ma C, Zhao J, Cao C, Lin T-C, Li X (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part I: effect of nanoparticles on optical reflectivity, specific heat, and thermal conductivity. J Manuf Sci Eng 138:121001–121007CrossRefGoogle Scholar
  24. 24.
    Xu J, Chen L, Choi H, Konish H, Li X (2013) Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci Rep 3:1730CrossRefGoogle Scholar
  25. 25.
    Liu W, Cao C, Xu J, Wang X, Li X (2016) Molten salt assisted solidification nanoprocessing of Al–TiC nanocomposites. Mater Lett 185:392–395CrossRefGoogle Scholar
  26. 26.
    Ma C, Zhao J, Cao C, Lin T-C, Li X (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part II: effect of nanoparticles on surface tension, viscosity, and laser melting. J Manuf Sci Eng 138:121002–121006CrossRefGoogle Scholar
  27. 27.
    Yao GC, Mei QS, Li JY, Li CL, Ma Y, Chen F, Liu M (2016) Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding. Mater Des 110:124–129CrossRefGoogle Scholar
  28. 28.
    Cao G, Choi H, Konishi H, Kou S, Lakes R, Li X (2008) Mg–6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J Mater Sci 43:5521. CrossRefGoogle Scholar
  29. 29.
    Davis JR (2001) Copper and copper alloys. ASM International, New YorkGoogle Scholar
  30. 30.
    Mills KC, Su YC (2006) Review of surface tension data for metallic elements and alloys: part 1—pure metals. Int Mater Rev 51:329–351CrossRefGoogle Scholar
  31. 31.
    Xu JQ, Chen LY, Choi H, Li XC (2012) Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys Condens Matter 24:255304CrossRefGoogle Scholar
  32. 32.
    Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, BurlingtonGoogle Scholar
  33. 33.
    Zhou D, Wang X, Zeng W, Yang C, Pan H, Li C, Liu Y, Zhang D (2018) Doping Ti to achieve microstructural refinement and strength enhancement in a high volume fraction Y2O3 dispersion strengthened Cu. J Alloys Compd 753:18–27CrossRefGoogle Scholar
  34. 34.
    Li M, Chen F, Si X, Wang J, Du S, Huang Q (2018) Copper–SiC whiskers composites with interface optimized by Ti3SiC2. J Mater Sci 53:9806–9815. CrossRefGoogle Scholar
  35. 35.
    Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83CrossRefGoogle Scholar
  36. 36.
    Zhou D, Geng H, Zeng W, Sha G, Kong C, Quadir Z, Munroe P, Torrens R, Trimby P, Zhang D (2018) Effect of extrusion temperature on microstructure and properties of an ultrafine-grained Cu matrix nanocomposite fabricated by powder compact extrusion. J Mater Sci 53:5389–5401. CrossRefGoogle Scholar
  37. 37.
    Girish BM, Basawaraj BR, Satish BM, Somashekar DR (2012) Electrical resistivity and mechanical properties of tungsten carbide reinforced copper alloy composites. Int J Compos Mater 2:37–42Google Scholar
  38. 38.
    da Costa FA, da Silva AGP, Gomes UU (2003) The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technol 134:123–132CrossRefGoogle Scholar
  39. 39.
    Stobrawa J, Rdzawski Z (2007) Dispersion–strengthened nanocrystalline copper. J Achiev Mater Manuf Eng 24:35–42Google Scholar
  40. 40.
    Zauter R, Kudashov DV (2006) Precipitation hardened high copper alloys for connector pins made of wire. In: Proceedings of ICEC2006/Sendai, pp 257–261Google Scholar
  41. 41.
  42. 42.
    Zhao N, Li J, Yang X (2004) Influence of the P/M process on the microstructure and properties of WC reinforced copper matrix composite. J Mater Sci 39:4829–4834. CrossRefGoogle Scholar
  43. 43.
    Tsakiris V, Enescu E, Radulian A, Lucaci M, Lungu M, Mocioi N, Leonat L, Cirstea D, Caramitu A (2016) WC–Cu electrical contacts developed by spark plasma sintering process. In: 2016 international symposium on fundamentals of electrical engineering (ISFEE)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations