Journal of Materials Science

, Volume 54, Issue 5, pp 3817–3831 | Cite as

Preparation, characterization and catalytic performance of polyoxometalate immobilized on the surface of halloysite

  • Zhiyuan Ma
  • Ruiqiang Wang
  • Tian Yu
  • Lihua BiEmail author
Chemical routes to materials


Polyoxometalates (POMs) are well known to have excellent catalytic performances for oxidation of organic substrates. In this paper, we immobilized POM, Cs3(NH4)[{Ru4O6(H2O)9}2Sb2W20O68(OH)2]·9H2O (SbWRu), on the surface of halloysite nanotubes (HNTs) functionalized by 3-aminopropyltriethoxysilane (Apts) to prepare a novel heterogeneous catalyst, HNTs/Apts/SbWRu, which is never reported in the literature to our knowledge. The catalyst HNTs/Apts/SbWRu was characterized by elemental analysis, IR spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N2 adsorption measurements to determine its composition, structure and morphology. The catalytic performance of this catalyst was tested in green oxidation system of n-tetradecane using air as oxidant under the mild reaction condition with normal atmospheric pressure and low temperature and without adding any solvents and additives. Furthermore, in order to find the optimum catalytic reaction condition, we prepared five catalysts containing different amounts of SbWRu, 0.97%, 1.94%, 2.80%, 4.23% and 5.87%. The results of the controlled experiments confirmed that the catalyst containing SbWRu of 1.94% exhibited high activity with a conversion (53.30%) and turnover frequency (TOF: 52396 h−1) at the optimal reaction condition. Moreover, this catalyst can be recovered and reused by filtration without significant loss of its catalytic performance for at least five times. The final conversion of n-tetradecane runs up to 87.97% after five consecutive cycles without the separation of the catalyst HNTs/Apts/SbWRu (1.94%).



This research here obtains the support of the National Natural Science Foundation of China (21173102 and 21473072) and China Scholarship Council ([2017]3059); Prof. Bi LH thanks the China Scholarship Council (No. 201706175047) for her financial support to visit University of South Australia, Australia.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.


  1. 1.
    Boesing M, Loose I, Pohlmann H, Krebs B (1997) New strategies for the generation of large heteropolymetalate clusters: the β-B-SbW9 fragment as a multifunctional unit. Chem Eur J 3:1232–1237CrossRefGoogle Scholar
  2. 2.
    Han XB, Zhang ZM, Zhang T, Li YG, Lin W, You W, Su ZM, Wang EB (2014) Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J Am Chem Soc 136:5359–5366CrossRefGoogle Scholar
  3. 3.
    Kalinina IV, Izarova NV, Kortz U (2012) Bis[tetraruthenium(IV)]-containing polyoxometalates: [{Ru4IVO6(H2O)9}2Sb2W20O68(OH)2]4− and [{Ru4IVO6(H2O)9}2{Fe(H2O)2}2{β-TeW9O33}2H]. Inorg Chem 51:7442–7444CrossRefGoogle Scholar
  4. 4.
    Loose I, Droste E, Bösing M, Pohlmann H, Dickman MH, Rosu C, Pope Michael T, Krebs Bernt (1999) Heteropolymetalate clusters of the subvalent main group elements BiIII and SbIII ‖. Inorg Chem 38:2688–2694CrossRefGoogle Scholar
  5. 5.
    Tan H, Zhang Z, Liu D, Qi Y, Wang E, Li Y (2008) A new sandwich polyoxometalate constructed from a Zn612+ hexagon cluster sandwiched by two B-α-[BiW9O33]9−. J Clust Sci 19:543–550CrossRefGoogle Scholar
  6. 6.
    Jameel U, Zhu M, Chen X, Tong Z (2015) Recent progress of synthesis and applications in polyoxometalate and nanogold hybrid materials. J Mater Sci 51:2181–2198. CrossRefGoogle Scholar
  7. 7.
    Aparicio-Anglès X, Miró P, Clotet A, Bo C, Poblet JM (2012) Polyoxometalates adsorbed on metallic surfaces: immediate reduction of [SiW12O40]4− on Ag(100). Chem Sci 3:2020–2027CrossRefGoogle Scholar
  8. 8.
    Tan R, Liu C, Feng N, Xiao J, Zheng W, Zheng A, Yin D (2012) Phosphotungstic acid loaded on hydrophilic ionic liquid modified SBA-15 for selective oxidation of alcohols with aqueous H2O2. Microporous Mesoporous Mater 158:77–87CrossRefGoogle Scholar
  9. 9.
    Leng Y, Wang J, Zhu D, Zhang M, Zhao P, Long Z, Huang J (2011) Polyoxometalate-based amino-functionalized ionic solid catalysts lead to highly efficient heterogeneous epoxidation of alkenes with H2O2. Green Chem 13:1636–1639CrossRefGoogle Scholar
  10. 10.
    Pathan S, Patel A (2014) Keggin type transition metal substituted phosphomolybdates: heterogeneous catalysts for selective aerobic oxidation of alcohols and alkenes under solvent free condition. Catal Sci Technol 4:648–656CrossRefGoogle Scholar
  11. 11.
    Patel A (2016) Functionalization of Keggin-type Nickel substituted phosphotungstate by imidazole: synthesis, characterization, and catalytic activity. J Mater Sci 52:4689–4699. CrossRefGoogle Scholar
  12. 12.
    Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198CrossRefGoogle Scholar
  13. 13.
    Zheng DM, Wang RQ, Du Y, Hou GF, Wu LX, Bi LH (2016) A new organo-ruthenium substituted tungstotellurate: synthesis, structural characterization and catalytic properties. New J Chem 40:8829–8836CrossRefGoogle Scholar
  14. 14.
    Wang RQ, Suo L, Zheng DM, Du Y, Wu LX, Bi LH (2016) A heterogeneous catalyst containing tetraruthenium (IV)-substituted silicotungstate: preparation, characterization and catalytic performance toward oxidation of n-tetradecane with air. Inorg Chim Acta 443:218–223CrossRefGoogle Scholar
  15. 15.
    Zhou Y, Chen G, Long Z, Wang J (2014) Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations. RSC Adv 4:42092–42113CrossRefGoogle Scholar
  16. 16.
    Sharma RK, Sharma S, Dutta S, Zboril R, Gawande MB (2015) Silica-nanosphere-based organic-inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chem 17:3207–3230CrossRefGoogle Scholar
  17. 17.
    Mihalcik DJ, Lin W (2009) Mesoporous silica nanosphere-supported chiral ruthenium catalysts: synthesis, characterization, and asymmetric hydrogenation studies. ChemCatChem 1:406–413CrossRefGoogle Scholar
  18. 18.
    Fu J, Guo Y, Ma W, Fu C, Li L, Wang H, Zhang H (2018) Syntheses and ultra-deep desulfurization performance of sandwich-type polyoxometalate-based TiO2 nanofibres. J Mater Sci 53:15418–15429. CrossRefGoogle Scholar
  19. 19.
    Xiao W, Zhao P, Deng S, Zhang N (2015) Anchoring H3PW12O40 on 3-aminopropyltriethoxysilane modified graphene oxide: enhanced adsorption capacity and photocatalytic activity toward methyl orange. New J Chem 39:3719–3727CrossRefGoogle Scholar
  20. 20.
    Zhao S, Zhao X, Ouyang S, Zhu Y (2018) Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catal Sci Technol 8:1686–1695CrossRefGoogle Scholar
  21. 21.
    Shi D, He C, Qi B, Chen C, Niu J, Duan C (2015) Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C–C bond formation. Chem Sci 6:1035–1042CrossRefGoogle Scholar
  22. 22.
    Yazigi FJ, Wilson C, Long DL, Forgan RS (2017) Synthetic considerations in the self-assembly of coordination polymers of pyridine-functionalized hybrid Mn-anderson polyoxometalates. Cryst Growth Des 17:4739–4748CrossRefGoogle Scholar
  23. 23.
    Kaboudin B, Khanmohammadi H, Kazemi F (2017) Polymer supported gold nanoparticles: synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water. Appl Surf Sci 425:400–406CrossRefGoogle Scholar
  24. 24.
    Lu D, Gai F, Qiao ZA, Wang X, Wang T, Liu Y, Huo Q (2016) Ru(bpy)2(phen-5-NH2)2+ doped ultrabright and photostable fluorescent silica nanoparticles. RSC Adv 6:51591–51597CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Li Y, Li W, Wu Y, Wu L (2010) Preparation, structure, and imaging of luminescent SiO2 nanoparticles by covalently grafting surfactant-encapsulated europium-substituted polyoxometalates. Langmuir 26:18430–18436CrossRefGoogle Scholar
  26. 26.
    Zhao S, Jia Y, Song YF (2014) Acetalization of aldehydes and ketones over H4[SiW12O40] and H4[SiW12O40]/SiO2. Catal Sci Technol 4:2618–2625CrossRefGoogle Scholar
  27. 27.
    Armatas GS, Bilis G, Louloudi M (2011) Highly ordered mesoporous zirconia-polyoxometalate nanocomposite materials for catalytic oxidation of alkenes. J Mater Chem 21:2997–3005CrossRefGoogle Scholar
  28. 28.
    Du DY, Yan LK, Su ZM, Li SL, Lan YQ, Wang EB (2013) Chiral polyoxometalate-based materials: from design syntheses to functional applications. Coord Chem Rev 257:702–717CrossRefGoogle Scholar
  29. 29.
    Tüysüz H, Schüth F (2012) Ordered mesoporous materials as catalysts. Adv Catal 55:127–239Google Scholar
  30. 30.
    Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582Google Scholar
  31. 31.
    Tierrablanca E, Romero-García J, Roman P, Cruz-Silva R (2010) Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes. Appl Catal A Gen 381:267–273CrossRefGoogle Scholar
  32. 32.
    Wu S, Qiu M, Guo B, Zhang L, Lvov Y (2017) Nanodot-loaded clay nanotubes as green and sustained radical scavengers for elastomer. ACS Sustain Chem Eng 5:1775–1783CrossRefGoogle Scholar
  33. 33.
    Qi R, Guo R, Shen M, Cao X, Zhang L, Xu J, Yu J, Shi X (2010) Electrospun poly(lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J Mater Chem 20:10622–10629CrossRefGoogle Scholar
  34. 34.
    Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces 5:10559–10564CrossRefGoogle Scholar
  35. 35.
    Cui CH, Li HH, Yu JW, Gao MR, Yu SH (2010) Ternary heterostructured nanoparticle tubes: a dual catalyst and its synergistic enhancement effects for O2/H2O2 reduction. Angew Chem Int Ed 49:9149–9152CrossRefGoogle Scholar
  36. 36.
    Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497CrossRefGoogle Scholar
  37. 37.
    Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals—a review. Clay Miner 40:383–426CrossRefGoogle Scholar
  38. 38.
    Ye Z, Li J, Zhou M, Wang H, Ma Y, Huo P, Yu L, Yan Y (2016) Well-dispersed nebula-like ZnO/CeO2@HNTs heterostructure for efficient photocatalytic degradation of tetracycline. Chem Eng J 304:917–933CrossRefGoogle Scholar
  39. 39.
    Ge L, Lin R, Wang L, Rufford TE, Villacorta B, Liu S, Liu LX, Zhu Z (2017) Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation. Sep Purif Technol 173:63–71CrossRefGoogle Scholar
  40. 40.
    Wu H, Watanabe H, Ma W, Fujimoto A, Higuchi T, Uesugi K, Takeuchi A, Suzuki Y, Jinnai H, Takahara A (2013) Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29:14971–14975CrossRefGoogle Scholar
  41. 41.
    Liu M, Guo B, Du M, Cai X, Jia D (2007) Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18:455703(1–9)Google Scholar
  42. 42.
    Wang R, Jiang G, Ding Y, Wang Y, Sun X, Wang X, Chen W (2011) Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl Mater Interfaces 3:4154–4158CrossRefGoogle Scholar
  43. 43.
    Xing W, Ni L, Huo P, Lu Z, Liu X, Luo Y, Yan Y (2012) Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method. Appl Surf Sci 259:698–704CrossRefGoogle Scholar
  44. 44.
    Moslehyani A, Ismail AF, Othman MHD, Matsuura T (2015) Hydrocarbon degradation and separation of bilge water via a novel TiO2-HNTs/PVDF-based photocatalytic membrane reactor (PMR). RSC Adv 5:14147–14155CrossRefGoogle Scholar
  45. 45.
    Zou M, Du M, Zhu H, Xu C, Fu Y (2012) Green synthesis of halloysite nanotubes supported Ag nanoparticles for photocatalytic decomposition of methylene blue. J Phys D Appl Phys 45:325302(1–7)Google Scholar
  46. 46.
    Das S, Jana S (2015) A facile approach to fabricate halloysite/metal nanocomposites with preformed and in situ synthesized metal nanoparticles: a comparative study of their enhanced catalytic activity. Dalton Trans 44:8906–8916CrossRefGoogle Scholar
  47. 47.
    Sahiner N, Sengel SB (2017) Environmentally benign halloysite clay nanotubes as alternative catalyst to metal nanoparticles in H2 production from methanolysis of sodium borohydride. Fuel Process Technol 158:1–8CrossRefGoogle Scholar
  48. 48.
    Dayan O, Tercan M, Özdemir N (2016) Syntheses and molecular structures of novel Ru(II) Complexes with bidentate benzimidazole based ligands and their catalytic efficiency for oxidation of benzyl alcohol. J Mol Struct 1123:35–43CrossRefGoogle Scholar
  49. 49.
    Meng RQ, Wang B, Sui HM, Li B, Song W, Wu LX, Zhao B, Bi LH (2013) Organoruthenium-supported polyoxotungstate-synthesis, structure and oxidation ofn-hexadecane with air. Eur J Inorg Chem 2013:1935–1942CrossRefGoogle Scholar
  50. 50.
    Zeng G, He Y, Yu Z, Zhan Y, Ma L, Zhang L (2016) Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites. Appl Surf Sci 371:624–632CrossRefGoogle Scholar
  51. 51.
    Machado GS, de Freitas Castro KAD, Wypych F, Nakagaki S (2008) Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions. J Mol Catal A Chem 283:99–107CrossRefGoogle Scholar
  52. 52.
    Wang Y, Liu C, Zhang Y, Zhang B, Liu J (2015) Facile fabrication of flowerlike natural nanotube/layered double hydroxide composites as effective carrier for lysozyme immobilization. ACS Sustain Chem Eng 3:1183–1189CrossRefGoogle Scholar
  53. 53.
    Wang L, Chen J, Ge L, Zhu Z, Rudolph V (2011) Halloysite-nanotube-supported ru nanoparticles for ammonia catalytic decomposition to produce COx-free hydrogen. Energ Fuel 25:3408–3416CrossRefGoogle Scholar
  54. 54.
    Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2012) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751CrossRefGoogle Scholar
  55. 55.
    Liu M, Wu C, Jiao Y, Xiong S, Zhou C (2013) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1:2078–2089CrossRefGoogle Scholar
  56. 56.
    Ganganboina AB, Dutta Chowdhury A, R-a Doong (2017) New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors. ACS Sustain Chem Eng 5:4930–4940CrossRefGoogle Scholar
  57. 57.
    Pandey G, Munguambe DM, Tharmavaram M, Rawtani D, Agrawal YK (2017) Halloysite nanotubes-an efficient ‘nano-support’ for the immobilization of α-amylase. Appl Clay Sci 136:184–191CrossRefGoogle Scholar
  58. 58.
    Thomas JM, Raja R, Sankar G, Bell RG (1999) Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen. Nature 398:227–230CrossRefGoogle Scholar
  59. 59.
    Chen L, Hu J, Mal SS, Kortz U, Jaensch H, Mathys G, Richards RM (2009) Heterogeneous wheel-shaped Cu20-polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25− catalyst for solvent-free aerobic oxidation of n-hexadecane. Chem Eur J 15:7490–7497CrossRefGoogle Scholar
  60. 60.
    Suo L, Meng RQ, Zheng DM, Wu LX, Bi LH (2014) Preparation, characterization and catalytic activity studies of organoruthenium-supported polyoxotungstates on SBA-15. Appl Organomet Chem 28:845–851CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Future Industries InstituteUniversity of South AustraliaAdelaideAustralia

Personalised recommendations