Journal of Materials Science

, Volume 54, Issue 5, pp 3994–4010 | Cite as

Hydrogen storage in MIL-88 series

  • Nguyen Thi Xuan Huynh
  • Viorel Chihaia
  • Do Ngoc SonEmail author


To be selected as sorbents for gas storage, metal–organic frameworks (MOFs) must be stable to avoid collapsed in humid media. MIL-88 series (abbreviated as MIL-88s) including MIL-88A, B, C, D satisfies high flexibility and stability; it, therefore, may become a suitable candidate for hydrogen storage based on the adsorption. In this work, the grand canonical Monte Carlo simulations for the pressures below 100 bar showed that in MIL-88 series MIL-88D exhibits the highest absolute and excess gravimetric H2 capacities of 5.15 wt% and 4.03 wt% at 77 K, and 0.69 wt% and 0.23 wt% at 298 K, respectively. Meanwhile, MIL-88A has the highest absolute and excess volumetric H2 uptakes of 50.69 g/L and 44.32 g/L at 77 K, and 6.97 g/L and 2.49 g/L at 298 K. These results are comparable to the best MOFs for hydrogen storage to date. It was shown that the hydrogen uptakes depend on the special surface area and the pore volume of the MIL-88s, apart from depending on the type of the ligand. By utilizing the van der Waals dispersion-corrected density functional theory (DFT) calculations, we elucidated the interaction between the H2 molecule and the MIL-88 series. The adsorption energy, as well as the isosteric heat of adsorption, revealed that the H2—MIL-88C interaction is strongest despite its lowest storage capacity. This observation implies an implicit role of electronic structure on the H2 adsorption capacities at the considered conditions. However, at the low temperature, the DFT calculations could elucidate the preferred adsorption sites of hydrogen molecule on the surface of MIL-88s. Besides, we also found that the interaction is dominated by the bonding state of the H2 molecule and the p orbitals of the O and C atoms of the MIL-88s. The most substantial overlap between the electronic density of states (DOS) of the MIL-88C and the DOS of the H2 molecule leads to the most robust interaction between the H2 molecule and the MIL-88C.



This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2017.04. We acknowledge the usage of the computer time and software granted by the Institute of Physical Chemistry of Romanian Academy, Bucharest (HPC infrastructure developed under the projects Capacities 84 Cp/I of 15.09.2007 and INFRANANOCHEM 19/01.03.2009).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10853_2018_3140_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 453 kb)


  1. 1.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRefGoogle Scholar
  2. 2.
    Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16:3024–3033CrossRefGoogle Scholar
  3. 3.
    Niaz S, Manzoor T, Pandith AH (2015) Hydrogen storage: materials, methods and perspectives. Renew Sustain Energy Rev 50:457–469CrossRefGoogle Scholar
  4. 4.
    Demirocak DE, Zou L, Zhou H-C (2017) Hydrogen production, storage, and utilization. In: Bashir S, Liu JL, Chen Y-P (eds) Nanostructured materials next-generation energy storage conversion. Springer, Berlin, pp 117–142CrossRefGoogle Scholar
  5. 5.
    Hwang HT, Varma A (2014) Hydrogen storage for fuel cell vehicles. Curr Opin Chem Eng 5:42–48CrossRefGoogle Scholar
  6. 6.
    Panella B, Hirscher M (2010) Physisorption in porous materials. In: Hirscher M (ed) Handbook of hydrogen storage new materials future energy. Wiley, Weinheim, pp 39–62CrossRefGoogle Scholar
  7. 7.
    Han SS, Mendoza-Cortes JL, Goddard WA (2009) Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem Soc Rev 38:1460–1476CrossRefGoogle Scholar
  8. 8.
    Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835CrossRefGoogle Scholar
  9. 9.
    Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38:1294–1314CrossRefGoogle Scholar
  10. 10.
    Dincǎ M, Long JR (2008) Hydrogen storage in microporous metal–organic frameworks with exposed metal sites. Angew Chemie Int Ed 47:6766–6779CrossRefGoogle Scholar
  11. 11.
    Collins DJ, Zhou H, Collins DJ, Collins D (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17:3154–3160CrossRefGoogle Scholar
  12. 12.
    Nijem N, Veyan J-F, Kong L et al (2010) Interaction of molecular hydrogen with microporous metal organic framework materials at room temperature. J Am Chem Soc 132:1654–1664CrossRefGoogle Scholar
  13. 13.
    Yoon JW, Seo Y, Hwang YK et al (2010) Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew Chem Int Ed 49:5949–5952CrossRefGoogle Scholar
  14. 14.
    Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed 44:4670–4679CrossRefGoogle Scholar
  15. 15.
    Vitillo JG, Regli L, Chavan S et al (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130:8386–8396CrossRefGoogle Scholar
  16. 16.
    Mellot-Draznieks C, Serre C, Surblé S et al (2005) Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. J Am Chem Soc 127:16273–16278CrossRefGoogle Scholar
  17. 17.
    Serre C, Mellot-Draznieks C, Surblé S et al (2007) Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315:1828–1831CrossRefGoogle Scholar
  18. 18.
    Horcajada P, Salles F, Wuttke S et al (2011) How linker’s modification controls swelling properties of highly flexible iron (III) dicarboxylates MIL-88. J Am Chem Soc 133:17839–17847CrossRefGoogle Scholar
  19. 19.
    Xuan Huynh NT, Na OM, Chihaia V, Son DN (2017) A computational approach towards understanding hydrogen gas adsorption in Co—MIL-88A. RSC Adv 7:39583–39593CrossRefGoogle Scholar
  20. 20.
    Wang J, Wan J, Ma Y et al (2016) Metal–organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation. RSC Adv 6:112502–112511CrossRefGoogle Scholar
  21. 21.
    Xu W-T, Ma L, Ke F et al (2014) Metal–organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Trans 43:3792–3798CrossRefGoogle Scholar
  22. 22.
    McKinlay AC, Eubank JF, Wuttke S et al (2013) Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal–organic frameworks. Chem Mater 25:1592–1599CrossRefGoogle Scholar
  23. 23.
    Wongsakulphasatch S, Kiatkittipong W, Saupsor J et al (2016) Effect of Fe open metal site in metal–organic frameworks on post-combustion CO2 capture performance. Greenh Gases Sci Technol 7:383–394CrossRefGoogle Scholar
  24. 24.
    Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2016) RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul 42:81–101CrossRefGoogle Scholar
  25. 25.
    Serre C, Millange F, Surblé S, Férey G (2004) A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew Chem Int Ed 43:6286–6289CrossRefGoogle Scholar
  26. 26.
    Surble S, Serre C, Mellot-Draznieks C et al (2006) A new isoreticular class of metal–organic-frameworks with the MIL-88 topology. Chem Commun 3:284–286CrossRefGoogle Scholar
  27. 27.
    Manz TA, Sholl DS (2012) Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. J Chem Theory Comput 8:2844–2867CrossRefGoogle Scholar
  28. 28.
    Frenkel D, Smit B (eds) (2002) Understanding molecular simulation: from algorithms to applications, 2nd ed. Academic Press, San Diego, pp 291–320Google Scholar
  29. 29.
    Levesque D, Gicquel A, Darkrim FL, Kayiran SB (2002) Monte Carlo simulations of hydrogen storage in carbon nanotubes. J Phys: Condens Matter 14:9285–9293Google Scholar
  30. 30.
    Dion M, Rydberg H, Schröder E et al (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401CrossRefGoogle Scholar
  31. 31.
    Thonhauser T, Cooper VR, Li S et al (2007) Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys Rev B 76:125112CrossRefGoogle Scholar
  32. 32.
    Langreth DC, Lundqvist BI, Chakarova-Käck SD et al (2009) A density functional for sparse matter. J Phys: Condens Matter 21:084203Google Scholar
  33. 33.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  34. 34.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  35. 35.
    Perdew J, Chevary J, Vosko S et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Burke K, Ernzerhof M (1997) Errata: generalized gradient approximation made simple. Phys Rev Lett 78:1396CrossRefGoogle Scholar
  38. 38.
    Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  39. 39.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  40. 40.
    Pack JD, Monkhorst HJ (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  41. 41.
    Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRefGoogle Scholar
  42. 42.
    Blochl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49:16223–16233CrossRefGoogle Scholar
  43. 43.
    Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys: Condens Matter 21:084204Google Scholar
  44. 44.
    Tyuterev VG, Vast N (2006) Murnaghan’s equation of state for the electronic ground state energy. Comput Mater Sci 38:350–353CrossRefGoogle Scholar
  45. 45.
    Li Y, Xie L, Liu Y et al (2008) Favorable hydrogen storage properties of M(HBTC)(4,4′-bipy).3DMF (M=Ni and Co). Inorg Chem 47:10372–10377CrossRefGoogle Scholar
  46. 46.
    Farha OK, Yazaydın AÖ, Eryazici I et al (2010) De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948CrossRefGoogle Scholar
  47. 47.
    Furukawa H, Ko N, Go YB et al (2010) Ultrahigh porosity in metal–organic frameworks. Science 329:424–428CrossRefGoogle Scholar
  48. 48.
    Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129:14176–14177CrossRefGoogle Scholar
  49. 49.
    Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal–organic frameworks. J Am Chem Soc 128:3494–3495CrossRefGoogle Scholar
  50. 50.
    Sumida K, Hill MR, Horike S et al (2009) Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J Am Chem Soc 131:15120–15121CrossRefGoogle Scholar
  51. 51.
    Lim WX, Thornton AW, Hill AJ et al (2013) High performance hydrogen storage from Be-BTB metal–organic framework at room temperature. Langmuir 29:8524–8533CrossRefGoogle Scholar
  52. 52.
    Sumida K, Brown CM, Herm ZR et al (2011) Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)—a metal–organic framework with open Mg2+ adsorption sites. Chem Commun 47:1157–1159CrossRefGoogle Scholar
  53. 53.
    Li Y, Yang RT (2007) Gas adsorption and storage in metal–organic framework MOF-177. Langmuir 23:12937–12944CrossRefGoogle Scholar
  54. 54.
    Yang SJ, Im JH, Nishihara H et al (2012) General relationship between hydrogen adsorption capacities at 77 and 298 K and pore characteristics of the porous adsorbents. J Phys Chem C 116:10529–10540CrossRefGoogle Scholar
  55. 55.
    Huong TTT, Thanh PN, Huynh NTX, Son DN (2016) Metal–organic frameworks: state-of-the-art material for gas capture and storage. VNU J Sci Math Phys 32:67–85Google Scholar
  56. 56.
    Pan L, Sander MB, Huang X et al (2004) Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J Am Chem Soc 126:1308–1309CrossRefGoogle Scholar
  57. 57.
    Mitchell L, Gonzalez-Santiago B, Mowat JPS et al (2013) Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and C=N bond-forming reactions. Catal Sci Technol 3:606–617CrossRefGoogle Scholar
  58. 58.
    Sculley J, Yuan D, Zhou H (2011) The current status of hydrogen storage in metal–organic frameworks-updated. Energy Environ Sci 4:2721–2735CrossRefGoogle Scholar
  59. 59.
    Oh H, Maurer S, Balderas-Xicohtencatl R et al (2017) Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M=Mg2+, Ni2+). Int J Hydrog Energy 42:1027–1035CrossRefGoogle Scholar
  60. 60.
    Fairen-Jimenez D, Colón YJ, Farha OK et al (2012) Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology. Chem Commun 48:10496–10498CrossRefGoogle Scholar
  61. 61.
    Frost H, Snurr RQ (2007) Design requirements for metal–organic frameworks as hydrogen storage materials. J Phys Chem C 111:18794–18803CrossRefGoogle Scholar
  62. 62.
    Schneemann A, Bon V, Schwedler I et al (2014) Flexible metal–organic frameworks. Chem Soc Rev 43:6062–6096CrossRefGoogle Scholar
  63. 63.
    Heinen J, Burtch NC, Walton KS, Dubbeldam D (2017) Flexible force field parameterization through fitting on the ab initio-derived elastic tensor. J Chem Theory Comput 13:3722–3730CrossRefGoogle Scholar
  64. 64.
    Vanpoucke DEP, Lejaeghere K, Van Speybroeck V, Waroquier M (2015) Mechanical properties from periodic plane wave QM codes: the challenge of the flexible nanoporous MIL-47 (V) framework. J Phys Chem C 119:23752–23766CrossRefGoogle Scholar
  65. 65.
    Wahiduzzaman M, Lenzen D, Maurin G et al (2018) Rietveld refinement of MIL-160 and its structural flexibility upon H2O and N2. Eur J Inorg Chem 2018:3626–3632. CrossRefGoogle Scholar
  66. 66.
    Bakhshian S, Sahimi M (2018) Theoretical model and numerical simulation of adsorption and deformation in flexible metal–organic frameworks. J Phys Chem C 122:9465–9473CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Technology, VNU-HCMHo Chi Minh CityVietnam
  2. 2.Quy Nhon UniversityQuy Nhon CityVietnam
  3. 3.Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian AcademyBucharestRomania

Personalised recommendations