Journal of Materials Science

, Volume 54, Issue 5, pp 4400–4408 | Cite as

The role of Cu content on structure and magnetic properties of Fe–Si–B–P–Cu nanocrystalline alloys

  • Xingjie Jia
  • Yanhui Li
  • Licheng Wu
  • Yan Zhang
  • Lei Xie
  • Wei ZhangEmail author


The increase in Cu content from 1.0 to 1.7 at.% changes the as-spun Fe86-xSi2B8P4Cux and Fe84-yMn2Si2B8P4Cuy alloys from a single amorphous phase to a composite of α-Fe nanoparticles dispersing in amorphous matrix and significantly refines the nanostructure and improves the magnetic softness of the annealed alloys. The as-spun Fe82.3Mn2Si2B8P4Cu1.7 amorphous alloy containing high number density α-Fe nanoparticles forms uniform nanostructure with fine α-Fe grains in an average size of 17 nm after annealing and exhibits low coercivity of 8.4 A m−1 and high effective permeability of 15000 at 1 kHz, which are superior to those of 38 nm, 85.4 A m−1 and 1400, respectively, for the Fe83Mn2Si2B8P4Cu1 amorphous alloy. The mechanism relating to the effect of Cu content on the grain refinement was discussed in terms of the as-spun structure and crystallization process of the alloys.



This research was supported by the National Natural Science Foundation of China [Grant Nos. 51571047, 51771039] and the Fundamental Research Funds for the Central Universities [DUT17ZD212].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Herzer G (2013) Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater 61:718–734CrossRefGoogle Scholar
  2. 2.
    Yoshizawa Y, Oguma S, Yamauchi K (1988) New Fe-based soft magnetic alloys composed of ultrafine grain structure. J Appl Phys 64:6044–6046CrossRefGoogle Scholar
  3. 3.
    McHenry ME, Willard MA, Laughlin DE (1999) Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 44:291–433CrossRefGoogle Scholar
  4. 4.
    Yoshizawa Y (2001) Magnetic properties and applications of nanostructured soft magnetic materials. Scripta Mater 44:1321–1325CrossRefGoogle Scholar
  5. 5.
    Makino A (2012) Nanocrystalline soft magnetic Fe-Si-BP-Cu alloys with high B s of 1.8–1.9 T contributable to energy saving. IEEE Trans Magn 48:1331–1335CrossRefGoogle Scholar
  6. 6.
    Makino A, Kubota T, Yubuta K, Inoue A, Urata A, Matsumoto H, Yoshida S (2011) Low core losses and magnetic properties of Fe85-86Si1-2B8P4Cu1 nanocrystalline alloys with high B for power applications. J Appl Phys 109:07A302-1–07A302-6CrossRefGoogle Scholar
  7. 7.
    Sharma P, Zhang X, Zhang Y, Makino A (2015) Competition driven nanocrystallization in high Bs and low coreloss Fe-Si-B-P-Cu soft magnetic alloys. Scripta Mater 95:3–6CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Sharma P, Makino A (2014) Effects of cobalt addition in nanocrystalline Fe83.3Si4B8P4Cu0.7 soft magnetic alloy. IEEE Trans Magn 50:1–4Google Scholar
  9. 9.
    Jia XJ, Li YH, Xie GQ, Qi TL, Zhang W (2018) Role of Mo addition on structure and magnetic properties of the Fe85Si2B8P4Cu1 nanocrystalline alloy. J Non-Cryst Solids 481:590–593CrossRefGoogle Scholar
  10. 10.
    Xiang Z, Wang AD, Zhao CL, Men H, Wang XM, Chang CT, Pan D (2015) Optimization of thermal stability and soft-magnetic properties of FeSiBPCuNb alloys by Nb content tuning. J Alloys Compd 622:1000–1004CrossRefGoogle Scholar
  11. 11.
    Jia XJ, Li YH, Wu LC, Zhang W (2018) Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition. AIP Adv 8:056110-1–056110-5Google Scholar
  12. 12.
    Hono K, Ping DH, Ohnuma M, Onodera H (1999) Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy. Acta Mater 47:997–1006CrossRefGoogle Scholar
  13. 13.
    Matsuura M, Nishijing M, Takenaka K, Takeuchi A, Ofuchi H, Makino A (2015) Evolution of fcc Cu clusters and their structure changes in the soft magnetic Fe85.2Si1B9P4Cu0.8 (NANOMET) and FINEMET alloys observed by X-ray absorption fine structure. J Appl Phys 117:17A324-1–17A324-4Google Scholar
  14. 14.
    Ohta M, Yoshizawa Y (2007) New high-B s Fe-based nanocrystalline soft magnetic alloys. Jpn J Appl Phys 46:L477–L479CrossRefGoogle Scholar
  15. 15.
    Li YH, Jia XJ, Xu YQ, Chang CT, Xie GQ, Zhang W (2017) Soft magnetic Fe-Si-B-Cu nanocrystalline alloys with high Cu concentrations. J Alloy Compd 722:859–863CrossRefGoogle Scholar
  16. 16.
    Herzer G (1990) Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 26:1397–1402CrossRefGoogle Scholar
  17. 17.
    Suzuki K, Herzer G (2012) Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scr Mater 67:548–553CrossRefGoogle Scholar
  18. 18.
    Suzuki K, Herzer G, Cadogan JM (1998) The effect of coherent uniaxial anisotropies on the grain-size dependence of coercivity in nanocrystalline soft magnetic alloys. J Magn Magn Mater 177–181:949–950CrossRefGoogle Scholar
  19. 19.
    Sharma P, Zhang X, Zhang Y, Makino A (2014) Influence of microstructure on soft magnetic properties of low coreloss and high B s Fe85Si2B8P4Cu1 nanocrystalline alloy. J Appl Phys 115:17A340-1–17A340-3Google Scholar
  20. 20.
    Tejedor M, GarcmHa JA, Carrizo J, Elbaile L, Santos JD (1999) Stress relief and magnetic properties of magnetostrictive Fe79B16Si5 amorphous magnetic ribbons. J Magn Magn Mater 202:485–491CrossRefGoogle Scholar
  21. 21.
    Suzuki K, Cadogan JM (1998) Random magnetocrystalline anisotropy in two-phase nanocrystalline systems. Phys Rev B 58:2730-1–2730-10Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations