Journal of Materials Science

, Volume 54, Issue 5, pp 4192–4201 | Cite as

Direct laser writing of graphene films from a polyether ether ketone precursor

  • Chenguang Zhu
  • Dongmei Zhao
  • Kedian WangEmail author
  • Xia Dong
  • Wenqiang Duan
  • Fangcheng Wang
  • Meng Gao
  • Guan Zhang
Energy materials


Graphene-based micro-supercapacitors exhibit excellent electrochemical performance that can easily meet the energy storage requirements of micro-electronic products. However, the complex preparation and transfer process steps of traditional preparation methods limit their wide application. Direct laser writing can deposit graphene laser-induced graphene (LIG) onto a specific substrate-patterned electrodes. This approach offers great advantages in the preparation of miniature and complex-patterned electrodes, but currently there is a limited choice of precursor materials. In this reported study, biocompatible polyether ether ketone (PEEK) was irradiated using a high repetition rate picosecond laser to produce graphene. Various photothermal and photochemical reactions were involved in the one-step conversion of PEEK into a film comprised of a several layers (3–4) of graphene. The electrochemical testing of a three-electrode system containing this novel graphene showed that LIG had a specific capacitance of 20.4 mF cm−2 at a scan speed of 10 mV s−1, and the capacitance was reversibly maintained with 89.37% retention of the initial capacitance after 5000 cycles. The novel LIG with higher specific capacitance and cycle stability has great potential for use in energy storage micro-devices.



The authors sincerely thank financial support from the National Natural Science Foundation of China (Grant No. 51775419).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Karim N, Afroj S, Malandraki A, Butterworth S, Beach C, Rigout M et al (2017) All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J Mater Chem C 5(44):11640–11648CrossRefGoogle Scholar
  2. 2.
    Shi X, Wu ZS, Qin J, Zheng S, Wang S, Zhou F, et al. (2017) Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output. Adv Mater 29(44):1703034Google Scholar
  3. 3.
    Xiong C, Li T, Zhao T, Dang A, Li H, Ji X et al (2017) Reduced graphene oxide-carbon nanotube grown on carbon fiber as binder-free electrode for flexible high-performance fiber supercapacitors. Compos B Eng 116:7–15CrossRefGoogle Scholar
  4. 4.
    Nayak AK, Das AK, Pradhan D (2017) High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO3 nanowires nanocomposite. ACS Sustain Chem Eng 5(11):10128–10138CrossRefGoogle Scholar
  5. 5.
    Li X, Cai W, Teh K, Qi M, Zang X, Ding X et al (2018) High-voltage flexible microsupercapacitors based on laser-induced graphene. ACS Appl Mater Interfaces 10:26357–26364CrossRefGoogle Scholar
  6. 6.
    Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, et al. (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29(19):1606679Google Scholar
  7. 7.
    Shen D, Zou G, Liu L, Zhao W, Wu A, Duley WW et al (2018) Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer. ACS Appl Mater Interfaces 10(6):5404–5412CrossRefGoogle Scholar
  8. 8.
    Sahoo S, Shim J-J (2016) Facile synthesis of three-dimensional ternary ZnCo2O4/Reduced graphene oxide/NiO composite film on nickel foam for next generation supercapacitor electrodes. ACS Sustain Chem Eng 5(1):241–251CrossRefGoogle Scholar
  9. 9.
    Mao L, Guan C, Huang X, Ke Q, Zhang Y, Wang J (2016) 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. Electrochim Acta 196:653–660CrossRefGoogle Scholar
  10. 10.
    Wang Z, Zhang QE, Long S, Luo Y, Yu P, Tan Z et al (2018) Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl Mater Interfaces 10(12):10437–10444CrossRefGoogle Scholar
  11. 11.
    Ciesielski A, Haar S, Aliprandi A, El Garah M, Tregnago G, Cotella GF et al (2016) Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots. ACS Nano 10(12):10768–10777CrossRefGoogle Scholar
  12. 12.
    Munuera JM, Paredes JI, Enterria M, Pagan A, Villar-Rodil S, Pereira MFR et al (2017) Electrochemical exfoliation of graphite in aqueous sodium halide electrolytes toward low oxygen content graphene for energy and environmental applications. ACS Appl Mater Interfaces 9(28):24085–24099CrossRefGoogle Scholar
  13. 13.
    Thodkar K, Thompson D, Luond F, Moser L, Overney F, Marot L et al (2017) Restoring the electrical properties of CVD graphene via physisorption of molecular adsorbates. ACS Appl Mater Interfaces 9(29):25014–25022CrossRefGoogle Scholar
  14. 14.
    Momeni Pakdehi D, Aprojanz J, Sinterhauf A, Pierz K, Kruskopf M, Willke P et al (2018) Minimum resistance anisotropy of epitaxial graphene on SiC. ACS Appl Mater Interfaces 10(6):6039–6045CrossRefGoogle Scholar
  15. 15.
    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRefGoogle Scholar
  16. 16.
    Zang X, Shen C, Chu Y, Li B, Wei M, Zhong J et al (2018) Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv Mater 30(26):1800062CrossRefGoogle Scholar
  17. 17.
    Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel EL et al (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714CrossRefGoogle Scholar
  18. 18.
    Lamberti A, Serrapede M, Ferraro G, Fontana M, Perrucci F, Bianco S, et al. (2017) All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater 4(3):035012Google Scholar
  19. 19.
    Zhang Z, Song M, Hao J, Wu K, Li C, Hu C (2018) Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127:287–296CrossRefGoogle Scholar
  20. 20.
    Yazdi AZ, Navas IO, Abouelmagd A, Sundararaj U (2017) Direct creation of highly conductive laser-induced graphene nanocomposites from polymer blends. Macromol Rapid Commun 38(17):1700176Google Scholar
  21. 21.
    Zheng Y, Xiong C, Wang Z, Li X, Zhang L (2015) A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response. Appl Surf Sci 344:79–88CrossRefGoogle Scholar
  22. 22.
    Li D, Shi D, Feng K, Li X, Zhang H (2017) Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J Membr Sci 530:125–131CrossRefGoogle Scholar
  23. 23.
    Hong W, Guo F, Chen J, Wang X, Zhao X, Xiao P (2018) Bioactive glass–chitosan composite coatings on PEEK: effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response. Appl Surf Sci 440:514–523CrossRefGoogle Scholar
  24. 24.
    Chyan Y, Ye R, Li Y, Singh SP, Arnusch CJ, Tour JM (2018) Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. Acs Nano 12(3):2176–2183CrossRefGoogle Scholar
  25. 25.
    Liu C, Liang H, Wu D, Lu X, Wang Q (2018) Direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor. Adv Electron Mater 4:1800092Google Scholar
  26. 26.
    In JB, Hsia B, Yoo J-H, Hyun S, Carraro C, Maboudian R et al (2015) Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 83:144–151CrossRefGoogle Scholar
  27. 27.
    Budde H, Coca-Lopez N, Shi X, Ciesielski R, Lombardo A, Yoon D et al (2016) Raman radiation patterns of graphene. ACS Nano 10(2):1756–1763CrossRefGoogle Scholar
  28. 28.
    Basu A, Roy K, Sharma N, Nandi S, Vaidhyanathan R, Rane S et al (2016) CO2 laser direct written MOF-based metal-decorated and heteroatom-doped porous graphene for flexible all-solid-state microsupercapacitor with extremely high cycling stability. ACS Appl Mater Interfaces 8(46):31841–31848CrossRefGoogle Scholar
  29. 29.
    Liu X, Chao D, Su D, Liu S, Chen L, Chi C et al (2017) Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy 37:108–117CrossRefGoogle Scholar
  30. 30.
    Yue Y, Liu N, Ma Y, Wang S, Liu W, Luo C et al (2018) Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12(5):4224–4232CrossRefGoogle Scholar
  31. 31.
    Li Y, Luong DX, Zhang J, Tarkunde YR, Kittrell C, Sargunaraj F, et al. (2017) Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater 29(27):1700496Google Scholar
  32. 32.
    Rathinam K, Singh SP, Li Y, Kasher R, Tour JM, Arnusch CJ (2017) Polyimide derived laser-induced graphene as adsorbent for cationic and anionic dyes. Carbon 124:515–524CrossRefGoogle Scholar
  33. 33.
    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRefGoogle Scholar
  34. 34.
    Das SR, Nian Q, Cargill AA, Hondred JA, Ding S, Saei M et al (2016) 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. Nanoscale 8(35):15870–15879CrossRefGoogle Scholar
  35. 35.
    Singh SP, Li Y, Be’er A, Oren Y, Tour JM, Arnusch CJ (2017) Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl Mater Interfaces 9(21):18238–18247CrossRefGoogle Scholar
  36. 36.
    Clerici F, Fontana M, Bianco S, Serrapede M, Perrucci F, Ferrero S et al (2016) In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl Mater Interfaces 8(16):10459–10465CrossRefGoogle Scholar
  37. 37.
    Karim N, Afroj S, Tan S et al (2017) Scalable production of graphene-based wearable E-textiles. ACS Nano 11(12):12266–12275CrossRefGoogle Scholar
  38. 38.
    Bao L, Li T, Chen S, Peng C, Li L, Xu Q, et al. (2017) 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13(5):1602077Google Scholar
  39. 39.
    Li Z, Huang T, Gao W, Xu Z, Chang D, Zhang C et al (2017) Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 11(11):11056–11065CrossRefGoogle Scholar
  40. 40.
    Shao Y, El-Kady MF, Lin CW, Zhu G, Marsh KL, Hwang JY et al (2016) 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv Mater 28(31):6719–6726CrossRefGoogle Scholar
  41. 41.
    Lamberti A, Perrucci F, Caprioli M, Serrapede M, Fontana M, Bianco S et al (2017) New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties. Nanotechnology 28:174002CrossRefGoogle Scholar
  42. 42.
    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z et al (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Manufacturing System EngineeringXi′an Jiaotong UniversityXi′anChina
  2. 2.Shaanxi Key Laboratory of Intelligent RobotsXi′an Jiaotong UniversityXi′anChina
  3. 3.School of Mechanical EngineeringXi′an Jiaotong UniversityXi′anChina
  4. 4.Engineering Training CenterXinjiang UniversityÜrümqiChina

Personalised recommendations