Journal of Materials Science

, Volume 54, Issue 5, pp 4354–4365 | Cite as

Study of the microstructure and texture heterogeneities of Fe–48wt%Ni alloy severely deformed by equal channel angular pressing

  • Rabeb LachhabEmail author
  • Mohamed Ali Rekik
  • Hiba Azzeddine
  • Thierry Baudin
  • Anne-Laure Helbert
  • François Brisset
  • Mohamed Khitouni


A Fe–48wt%Ni alloy was processed by severe plastic deformation using equal channel angular pressing process. A stacking of 9 sheets was introduced and pressed up to two passes into die with an inner angle of Φ = 90º and outer arc of curvature ψ = 17° at room temperature following route A. The same material in bulk form was also ECAPed up to one pass. The microstructure and the texture were investigated by means of electron backscattered diffraction and X-ray diffraction, respectively. To evaluate the mechanical response, Vickers microhardness was carried out. The given analyses concern the as-received sample, the peripheral and the central plates of the pressed stacks and the upper, the middle and the lower parts of the pressed bulk material. The deformation was heterogeneous, and variations in texture and microstructure, resulting from different efficiencies in the shearing process, were locally noted. For the stacks samples, the microstructure evolved from equiaxed grains of 9 μm with high fraction of high-angle grain boundaries (around 90%) to a heterogeneous fine grain structure with an average grain size of 3 μm after two passes. On the contrary, for the bulk sample, the evolution was to a banded structure after one pass. Results of mechanical property show that microhardness increased significantly from 147 Hv before deformation to mean values of 244 (after one pass) and 235 Hv (after two passes) for the bulk and stacked samples, respectively. The Hall–Petch effect and dislocation density were evaluated as most responsible in material strengthening.



This work was supported by the PHC-Maghreb program No. 16MAG03. Authors would like to thank R. Batonnet, Y. Ateba Betanda and T. Waeckerlé from Aperam alloys Imphy society, France, for providing the Fe–48%Ni (wt%) alloy.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Islamgaliev K, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189CrossRefGoogle Scholar
  3. 3.
    Segal VM, Reznikov VI, Drobyshevski AE, Kopylov VI (1981) Plastic working of metals by simple shear. Russ Metall 1:99–105Google Scholar
  4. 4.
    Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng A 137:35–40CrossRefGoogle Scholar
  5. 5.
    Valiev RZ, Korznikov AV, Mulyukov RR (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A 168:141–148CrossRefGoogle Scholar
  6. 6.
    Lee BS, Cho H (2007) Influence of ECAP routes on the microstructure and mechanical properties of hot extruded 3003 Al alloy. Solid State Phenom 124–126:1397–1400CrossRefGoogle Scholar
  7. 7.
    Beyerlein IJ, Tóth LS (2009) Texture evolution in equal-channel angular extrusion. Prog Mater Sci 54:427–510CrossRefGoogle Scholar
  8. 8.
    Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197:157–164CrossRefGoogle Scholar
  9. 9.
    Iwahashi Y, Wang JT, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater 35:143–146CrossRefGoogle Scholar
  10. 10.
    Aida T, Matsuki K, Horita Z, Langdon TG (2001) Estimating the equivalent strain in equal-channel angular pressing. Scr Mater 44:575–579CrossRefGoogle Scholar
  11. 11.
    Srinivasan R (2001) Computer simulation of the equichannel angular extrusion (ECAE) process. Scr Mater 44:91CrossRefGoogle Scholar
  12. 12.
    Hasani A, Lapovok R, Tóth LS, Molinari A (2008) Deformation field variations in equal channel angular extrusion due to back pressure. Scr Mater 58:771CrossRefGoogle Scholar
  13. 13.
    Suh JY, Kim HS, Chang JY (2001) Finite element analysis of material flow in equal channel angular pressing. Scr Mater 44:677CrossRefGoogle Scholar
  14. 14.
    Prangnell PB, Harris C, Roberts SM (1997) Finite element modelling of equal channel angular extrusion. Scr Mater 37:983–989CrossRefGoogle Scholar
  15. 15.
    Semiatin SL, DeLo DP, Shell EB (2000) The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion. Acta Mater 48:1841–1851CrossRefGoogle Scholar
  16. 16.
    Tidu A, Wagner F, Huang WH, Kao PW, Chang CP, Grosdidier T (2000) X-ray characterisation of size, strain and texture inhomogeneities in ultra fine grained copper processed by equal channel angular extrusion. J Phys IV 10:211Google Scholar
  17. 17.
    Li S, Beyerlein IJ, Necker CT, Alexander DJ, Bourke M (2004) Heterogeneity of deformation texture in equal channel angular extrusion of copper. Acta Mater 52:4859–4875CrossRefGoogle Scholar
  18. 18.
    Skrotzki W, Scheerbaum N, Oertel CG, Arruffat- Massion R, Suwas S, Tóth LS (2007) Microstructure and texture gradient in copper deformed by equal channel angular pressing. Acta Mater 55:2013–2024CrossRefGoogle Scholar
  19. 19.
    Fukuda Y, Oh-ishi K, Fukukawa M, Horita Z, Langdon TG (2004) The application of equal-channel angular pressing to an aluminum single crystal. Acta Mater 52:1387–1395CrossRefGoogle Scholar
  20. 20.
    Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53(6):893–979CrossRefGoogle Scholar
  21. 21.
    Skrotzki W, Tamm R, Klemm R, Thiele E, Holste C, Baum H (2002) Textural and microstructural characterization of equal channel angular pressed nickel. Mater Sci Forum 408–412:667–672CrossRefGoogle Scholar
  22. 22.
    Neishi K, Horita Z, Langdon TG (2002) Grain refinement of pure nickel using equal-channel angular pressing. Mater Sci Eng A 325:54–58CrossRefGoogle Scholar
  23. 23.
    Xie CY, Fan ZG, Li ZH, Xiang GQ, Cheng XH (2006) Effects of high temperature ECAE process on microstructures and martensitic transformation of TiNi shape memory alloy. Mater Sci Forum 503–504:1013–1018CrossRefGoogle Scholar
  24. 24.
    Pushin VG, Valiev RZ, Zhu YT, Gunderov DV, Kourov NI, Kuntsevich TE, Uksusnikov AN, Yurchenko LI (2006) Effect of severe plastic deformation on the behavior of Ti–Ni shape memory alloys. Mater Trans 47:694–697CrossRefGoogle Scholar
  25. 25.
    Tirsatine K, Azzeddine H, Baudin T, Helbert AL, Brisset F, Alili B, Bradai D (2014) Texture and microstructure evolution of Fe–Ni alloy after accumulative roll bonding. J Alloys Compd 610:352–360CrossRefGoogle Scholar
  26. 26.
    Azzeddine H, Tirsatine K, Baudin T, Helbert AL, Brisset F, Bradai D (2014) Texture evolution of an Fe–Ni alloy sheet produced by cross accumulative roll bonding. Mater Charact 97:140–149CrossRefGoogle Scholar
  27. 27.
    Betanda YA, Helbert AL, Brisset F, Wehbi M, Mathon MH, Waeckerlé T, Baudin T (2014) Influence of sulfur on the recrystallization and {100} < 001 > Cube texture formation in Fe48% Ni alloys tapes. Adv Eng Mater 15:933–939CrossRefGoogle Scholar
  28. 28.
    Boudekhani-Abbas S, Tirsatine K, Azzeddine H, Alili B, Helbert A L, Brisset F Baudin T, Bradai D (2018) Texture, microstructure and mechanical properties evolution in Fe-x (x = 36 and 48 wt%) Ni alloy after accumulative roll bonding. In: IOP conference series: materials science engineering, vol 375, p 012034Google Scholar
  29. 29.
    Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX. Solid State Phenom 160:6–68CrossRefGoogle Scholar
  30. 30.
    Carpenter HCH, Tamura S (1926) The formation of twinned metallic crystals. Proc R Soc A113(763):28–43CrossRefGoogle Scholar
  31. 31.
    Lin P, Palumbo G, Aust KT (1997) Experimental assessment of the contribution of annealing twins to CSL distributions in FCC materials. Srcipta Mater 36:1145–1149CrossRefGoogle Scholar
  32. 32.
    Hey-e W, Wasserman G (1968) Die Entstehung der Walztexturen der kubisch flaechenzentrierten Metalle durch Gleiten, mechanische Zwillingsbuildung und die Bildung beschraenkter Fasertexturen—2 (English). Z Metallkd 59:693–697Google Scholar
  33. 33.
    Jamaati R, Toroghinejad MR (2014) Effect of stacking fault energy on deformation texture development of nanostructured materials produced by the ARB process. Mater Sci Eng A 598:263–276CrossRefGoogle Scholar
  34. 34.
    Charnock W, Nutting J (1967) The effect of carbon and nickel upon the stacking-fault energy of iron. Metal Sci J 1:123–127CrossRefGoogle Scholar
  35. 35.
    Xu C, Furukawa M, Horita Z, Langdon TG (2003) Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy. Acta Mater 51:6139–6149CrossRefGoogle Scholar
  36. 36.
    Mishra A, Richard V, Gregori F, Kad B, Asaro RJ, Meyers MA (2006) Nanomaterials by severe plastic deformation. Trans Tech, Switzerland, pp 19–25Google Scholar
  37. 37.
    Salimyanfard F, Toroghinejad MR, Ashrafizadeh F, Hoseini M, Szpunar JA (2013) Investigation of texture and mechanical properties of copper processed by new route of equal channel angular pressing. Mater Des 44:374–381CrossRefGoogle Scholar
  38. 38.
    Larbi FH, Azzeddine H, Baudin T, Mathon MH, Brisset F, Helbert AL, Kawasaki M, Bradai D, Langdon TG (2015) Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing. J Alloys Compd 638:88–94CrossRefGoogle Scholar
  39. 39.
    Figueiredo RB, Cetlin PR, Langdon TG (2009) The evolution of damage in perfect-plastic and strain hardening materials processed by equal-channel angular pressing. Mater Sci Eng A 518:124–131CrossRefGoogle Scholar
  40. 40.
    Gazder AA, Dalla Torre F, Gu CF, Davies CHJ, Pereloma EV (2006) Microstructure and texture evolution of bcc and fcc metals subjected to equal channel angular extrusion. Mater Sci Eng A 415:126–139CrossRefGoogle Scholar
  41. 41.
    Gil Sevillano J, Van Houtte P, Aernoudt E (1977) The contribution of macroscopic shear bands to the rolling texture of FCC metals. Scr Metall 11:581CrossRefGoogle Scholar
  42. 42.
    Wert JA, Liu Q, Hansen N (1997) Dislocation boundary formation in a cold-rolled cube-oriented Al single crystal. Acta Mater 45:2565CrossRefGoogle Scholar
  43. 43.
    Basson F, Driver JH (2000) Deformation banding mechanisms during plane strain compression of cube-oriented f.c.c. crystals. Acta Mater 48:2101–2115CrossRefGoogle Scholar
  44. 44.
    Skrotzki W, Tränkner C, Chulist R, Beausir B, Suwas S, Tóth LS (2010) Texture heterogeneity in ECAP deformed copper. Solid State Phenom 160:47–54CrossRefGoogle Scholar
  45. 45.
    Suwas S, Arruffat-Massion R, Tóth LS, Fundenberger JJ, Eberhardt A, Skrotzki W (2006) Evolution of crystallographic texture during equal channel angular extrusion of copper: the role of material variables. Metall Mater Trans A 37:739–753CrossRefGoogle Scholar
  46. 46.
    Gholinia A, Bate P, Prangnell PB (2002) Modelling texture development during equal channel angular extrusion of aluminium. Acta Mater 50:2121–2136CrossRefGoogle Scholar
  47. 47.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res 17:5–8CrossRefGoogle Scholar
  48. 48.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer M, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39CrossRefGoogle Scholar
  49. 49.
    Grosdidier T, Fundenberger JJ, Goran D, Bouzy E, Suwas S, Skrotzki W, Tóth LS (2008) On microstructure and texture heterogeneities in single crystals deformed by equal channel angular extrusion. Scr Mater 59:1087–1090CrossRefGoogle Scholar
  50. 50.
    Beyerlein IJ, Li S, Necker CT, Alexander DJ, Tomé CN (2005) Non-uniform microstructure and texture evolution during equal channel angular extrusion. Philos Mag 85:1359–1394CrossRefGoogle Scholar
  51. 51.
    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scr Mater 44:2753–2758CrossRefGoogle Scholar
  52. 52.
    Zhilyaev AP, Nurislamova VG, Baro MD, Valiev RZ, Langdon TG (2002) Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP). Metall Mater Trans A 33:1865–1868CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie Inorganique Ur-11-Es-73Faculté des sciences de SfaxSfaxTunisie
  2. 2.Faculté de PhysiqueUniversité des Sciences et de la Technologie Houari BoumedieneBab EzzouarAlgérie
  3. 3.Département de PhysiqueUniversité de Mohamed BoudiafM’silaAlgérie
  4. 4.ICMMO, SP2M, UMR CNRS 8182Univ. Paris-Sud, Université Paris-SaclayOrsay CedexFrance

Personalised recommendations