Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 3786–3794 | Cite as

Ethanol–water-assisted room temperature synthesis of CsPbBr3/SiO2 nanocomposites with high stability in ethanol

  • Wen Li
  • Fengjun Chun
  • Xiaoqiang Fan
  • Wen Deng
  • Meilin Xie
  • Chao Luo
  • Shiyu Yang
  • Hanan Osman
  • Chuanqi Liu
  • Weiqing Yang
Chemical routes to materials
  • 155 Downloads

Abstract

All-inorganic halide perovskites have attracted great attention by virtue of the merits of bright emission, tunable wavelength and narrow-band emission. Despite the excellent optical features, all-inorganic halide perovskite materials have suffered from intrinsic instability, which has limited their applications in various optoelectronic devices. To mitigate the intractable issue, we demonstrated the CsPbBr3 nanoparticles decorated with smaller SiO2 nanocrystals to passivate the surface defects; SiO2 nanoparticles were applied as a barrier layer to maintain the optical property and enhance environmental stability. A facile in situ method was proposed to prepare CsPbBr3/SiO2 nanocomposites, in which an environmental ethanol/water solvent system was needed with the addition of tetraethyl orthosilicate (TEOS) as a silicon precursor. The obtained CsPbBr3/SiO2 nanocomposites have better optical characteristic and stability than bare CsPbBr3 nanoparticles. Even 70% photoluminescence intensity of as-prepared CsPbBr3/SiO2 nanocomposites can be maintained after 168 h storage in ethanol. This newly developed synthesis will open up a new route for the fabrication of optoelectronic devices in an environmentally friendly way, and the as-obtained perovskite materials with improved stability will make them great potential for multifunctional optoelectronic devices.

Notes

Acknowledgements

This work is supported by the Scientific and Technological Projects for International Cooperation Funds of Sichuan Science and Technology Program (Nos. 2017HH0069 and 2018RZ0074), the Fundamental Research Funds for the Central Universities of China (A0920502051408-10 and ZYGX2009Z0001) and Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University (No. D-YB201709).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shi D, Adinolfi V, Comin R, Yuan MJ, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522CrossRefGoogle Scholar
  2. 2.
    Ravi VK, Markad GB, Nag A (2016) Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett 1:665–671CrossRefGoogle Scholar
  3. 3.
    Sun HZ, Yang ZY, Wei MY, Sun W, Li XY, Ye SY, Zhao YB, Tan HR, Kynaston EL, Schon TB, Yan H, Lu Z-H, Ozin GA, Sargent EH, Seferos DS (2017) Chemically addressable perovskite nanocrystals for light-emitting applications. Adv Mater 29:1701153CrossRefGoogle Scholar
  4. 4.
    Chu Q-Q, Ding B, Li Y, Gao L, Qiu Q, Li C-X, Li C-J, Yang G-J, Fang BZ (2017) Fast drying boosted performance improvement of low-temperature paintable carbon-based perovskite solar cell. ACS Sustain Chem Eng 5:9758–9765CrossRefGoogle Scholar
  5. 5.
    Li Z, Klein TR, Kim DH, Yang MJ, Berry JJ, van Hest MFAM, Zhu K (2018) Scalable fabrication of perovskite solar cells. Nat Rev Mater 3:18017CrossRefGoogle Scholar
  6. 6.
    Xiao ZG, Kerner RA, Zhao LF, Tran NL, Lee KM, Koh T-W, Scholes GD, Rand BP (2017) Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photonics 11:108–115CrossRefGoogle Scholar
  7. 7.
    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter JM, Alsari M, Booker EP, Hutter EM, Pearson AJ, Lilliu S, Savenije TJ, Rensmo H, Divitini G, Ducati C, Friend RH, Stranks SD (2018) Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555:497–501CrossRefGoogle Scholar
  8. 8.
    Li XM, Yu DJ, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun ZG, Ji JP, Shen YL, Sun HD, Zeng HB (2017) Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano 11:2015–2023CrossRefGoogle Scholar
  9. 9.
    Dou L, Yang YM, You J, Hong Z, Chang WH, Li G, Yang Y (2014) Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 5:5404CrossRefGoogle Scholar
  10. 10.
    Veldhuis SA, Boix PP, Yantara N, Li MJ, Sum TC, Mathews N, Mhaisalkar SG (2016) Perovskite materials for light-emitting diodes and lasers. Adv Mater 28:6804–6834CrossRefGoogle Scholar
  11. 11.
    Sun WZ, Wang KY, Gu ZY, Xiao SM, Song QH (2016) Tunable perovskite microdisk lasers. Nanoscale 8:8717–8721CrossRefGoogle Scholar
  12. 12.
    Weidman MC, Goodman AJ, Tisdale WA (2017) Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem Mater 29:5019–5030CrossRefGoogle Scholar
  13. 13.
    Shi ZF, Li S, Li Y, Ji HF, Li XJ, Wu D, Xu TT, Chen YS, Tian YT, Zhang YT, Shan CX, Du GT (2018) Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano 12:1462–1472CrossRefGoogle Scholar
  14. 14.
    Akkerman QA, RainòG Kovalenko MV, Manna L (2018) Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat Mater 15:394–405CrossRefGoogle Scholar
  15. 15.
    Liu F, Zhang YH, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai SY, Shen Q (2017) Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11:10373–10383CrossRefGoogle Scholar
  16. 16.
    Krieg F, Ochsenbein ST, Yakunin S, Brinck ST, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C-J, Infante I, Kovalenko MV (2018) Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett 3:641–646CrossRefGoogle Scholar
  17. 17.
    Pan J, Shang YQ, Yin J, Bastiani MD, Peng W, Dursun I, Sinatra L, El-Zohry AM, Hedhili MN, Emwas A-H, Mohammed OF, Ning ZJ, Bakr OM (2018) Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J Am Chem Soc 140:562–565CrossRefGoogle Scholar
  18. 18.
    Xin YM, Zhao HJ, Zhang JY (2018) Highly stable and luminescent perovskite − polymer composites from a convenient and universal strategy. ACS Appl Mater Interfaces 10:4971–4980CrossRefGoogle Scholar
  19. 19.
    Hou SC, Guo YZ, Tang YG, Quan QM (2017) Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles. ACS Appl Mater Interfaces 9:18417–18422CrossRefGoogle Scholar
  20. 20.
    Yoon HC, Lee S, Song JK, Yang H, Do YR (2018) Efficient and stable CsPbBr 3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix. ACS Appl Mater Interfaces 10:11756–11767CrossRefGoogle Scholar
  21. 21.
    Li Z-J, Hofman E, Li J, Davis AH, Tung C-H, Wu L-Z, Zheng WW (2018) Photoelectrochemically active and environmentally stable CsPbBr 3/TiO2 core/shell nanocrystals. Adv Funct Mater 28:1704288CrossRefGoogle Scholar
  22. 22.
    Loiudice A, Saris S, Oveisi E, Alexander DTL, Buonsanti R (2017) CsPbBr 3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed 56:10696–10701CrossRefGoogle Scholar
  23. 23.
    Vassilakopoulou A, Papadatos D, Koutselas I (2016) Light emitting diodes based on blends of quasi-2D lead halide perovskites stabilized within mesoporous silica matrix. Micropor Mesopor Mater 249:165–175CrossRefGoogle Scholar
  24. 24.
    Vassilakopoulou A, Papadatos D, Koutselas I (2017) Flexible, cathodoluminescent and free standing mesoporous silica films with entrapped quasi-2D perovskites. Appl Surf Sci 400:434–439CrossRefGoogle Scholar
  25. 25.
    Dirin D, Protesescu L, Trummer D, Kochetygov IV, Yakunin S, Krumeich F, Stadie NP, Kovalenko MV (2016) Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett 16:5866–5874CrossRefGoogle Scholar
  26. 26.
    Malgras V, Tominaka S, Ryan JW, Henzie J, Takei T, Ohara K, Yamauchi Y (2016) Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J Am Chem Soc 138:13874–13881CrossRefGoogle Scholar
  27. 27.
    Wang H-C, Lin S-Y, Tang A-C, Singh BP, Tong H-C, Chen C-Y, Lee Y-C, Tsai T-L, Liu R-S (2016) Mesoporous silica particles integrated with all-inorganic CsPbBr 3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed 55:7924–7929CrossRefGoogle Scholar
  28. 28.
    Sun C, Zhang Y, Ruan C, Yin CY, Wang XY, Wang YD, Yu WW (2016) Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater 28:10088–10094CrossRefGoogle Scholar
  29. 29.
    Li XM, Wang Y, Sun HD, Zeng HB (2017) Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv Mater 29:1701185CrossRefGoogle Scholar
  30. 30.
    Hu HC, Wu LZ, Tan YS, Zhong QX, Chen M, Qiu YH, Yang D, Sun BQ, Zhang Q, Yin YD (2018) Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles. J Am Chem Soc 140:406–412CrossRefGoogle Scholar
  31. 31.
    Li XM, Wu Y, Zhang SL, Cai B, Gu Y, Song JZ, Zeng HB (2016) CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater 26:2584CrossRefGoogle Scholar
  32. 32.
    Zhang F, Zhong HZ, Chen C, Wu X-G, Hu XM, Huang HL, Han JB, Zou BS, Dong YP (2015) Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9:4533–4542CrossRefGoogle Scholar
  33. 33.
    Chen Y, Yu MH, Ye S, Song J, Qu JL (2018) All-inorganic CsPbBr 3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanolasers. Nanoscale 10:6704–6711CrossRefGoogle Scholar
  34. 34.
    Yang HZ, Zhang YH, Pan J, Yin J, Bakr OM, Mohammed OF (2017) Room-temperature engineering of all-inorganic perovskite nanocrystals with different dimensionalities. Chem Mater 29:8978–8982CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.College of Optoelectronic TechnologyChengdu University of Information TechnologyChengduChina

Personalised recommendations