Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 4314–4324 | Cite as

Macrodeformation twinning in a textured aluminum alloy via dynamic equal channel angular pressing

  • D. K. Qi
  • M. X. Tang
  • L. Lu
  • F. Zhao
  • L. Wang
  • S. N. Luo
Metals
  • 61 Downloads

Abstract

Dynamic equal channel angular pressing experiments are conducted on an aluminum alloy with impact directions (ID) parallel to the rolling direction (RD), transverse direction (TD) and normal direction (ND), referred to as the ID\(\parallel \)RD, ID\(\parallel \)TD and ID\(\parallel \)ND loading, respectively. Anisotropic deformation twinning is observed as a result of texture and grain elongation along RD, and the deformation twins can be activated both at grain boundaries and within grain interiors. Large-sized deformation twins (tens of \(\mu \)m long) form in the ID\(\parallel \)RD sample, while few twins are observed in the ID\(\parallel \)TD and ID\(\parallel \)ND samples during rapid severe plastic deformation. Molecular dynamics simulations are conducted to explain the effects of crystallographic orientations and grain geometry on deformation twinning. The resolved shear stress analysis shows that deformation twinning is easier to occur when the impact direction is along [001] and [110] than [111], and a larger grain dimension along the impact direction leads to a bigger twin size.

Notes

Acknowledgements

This work was sponsored in part by the National Key R&D Program of China (No. 2017YFB0702002), the Scientific Challenge Project of China (No. TZ2018001) and the National Natural Science Foundation of China (No. 11627901).

References

  1. 1.
    Mahajan S, Williams DF (1973) Deformation twinning in metals and alloys. Inter Metall Rev 18:43–61CrossRefGoogle Scholar
  2. 2.
    Hull D, Bacon DJ (2001) Introduction to dislocations. Butterworth-Heinemann, OxfordGoogle Scholar
  3. 3.
    Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev 12:169–194Google Scholar
  4. 4.
    Lu L, Huang JW, Fan D, Bie BX, Sun T, Fezzaa K, Gong XL, Luo SN (2016) Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: a study with simultaneous in situ synchrotron x-ray imaging and diffraction. Acta Mater 120:86–94CrossRefGoogle Scholar
  5. 5.
    Wang M, Lu L, Li C, Xiao XH, Zhou XM, Zhu J, Luo SN (2016) Deformation and spallation of a magnesium alloy under high strain rate loading. Mater Sci Eng A 661:126–131CrossRefGoogle Scholar
  6. 6.
    Gzyl M, Pesci R, Rosochowski A, Boczkal S, Olejnik L (2015) In situ analysis of the influence of twinning on the strain hardening rate and fracture mechanism in AZ31B magnesium alloy. J Mater Sci 50:2532–2543.  https://doi.org/10.1007/s10853-014-8812-0 CrossRefGoogle Scholar
  7. 7.
    Lu L, Bie BX, Li QH, Sun T, Fezzaa K, Gong XL, Luo SN (2017) Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron X-ray imaging and diffraction. Acta Mater 132:389–394CrossRefGoogle Scholar
  8. 8.
    Venables JA (1961) Deformation twinning in face-centred cubic metals. Philos Mag 6:379–396CrossRefGoogle Scholar
  9. 9.
    Williams K (1973) Deformation twinning in alloys of low stacking-fault energy. J Mater Sci 8:109–115.  https://doi.org/10.1007/BF00755589 CrossRefGoogle Scholar
  10. 10.
    Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403CrossRefGoogle Scholar
  11. 11.
    Huang JY, Wu YK, Ye HQ (1996) Deformation structures in ball milled copper. Acta Mater 44:1211–1221CrossRefGoogle Scholar
  12. 12.
    Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl Phys Lett 84:592–594CrossRefGoogle Scholar
  13. 13.
    Haasen P (1958) Plastic deformation of nickel single crystals at low temperatures. Philos Mag 3:384–418CrossRefGoogle Scholar
  14. 14.
    Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405CrossRefGoogle Scholar
  15. 15.
    Wang W, Lartigue-Korinek S, Brisset F, Helbert A, Bourgon J, Baudin T (2015) Formation of annealing twins during primary recrystallization of two low stacking fault energy Ni-based alloys. J Mater Sci 50:2167–2177.  https://doi.org/10.1007/s10853-014-8780-4 CrossRefGoogle Scholar
  16. 16.
    Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277CrossRefGoogle Scholar
  17. 17.
    Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Deformation twins in nanocrystalline al. Appl Phys Lett 83:5062–5064CrossRefGoogle Scholar
  18. 18.
    Han WZ, Cheng GM, Li SX, Wu SD, Zhang ZF (2008) Deformation induced microtwins and stacking faults in aluminum single crystal. Phys Rev Lett 101:115505CrossRefGoogle Scholar
  19. 19.
    Jin S, Zhang K, Bjørge R, Tao N, Marthinsen K, Lu K, Li Y (2015) Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy. Appl Phys Lett 107:091901CrossRefGoogle Scholar
  20. 20.
    Zhao F, Wang L, Fan D, Bie BX, Zhou XM, Suo T, Li YL, Chen MW, Liu CL, Qi ML, Zhu MH, Luo SN (2016) Macrodeformation twins in single-crystal aluminum. Phys Rev Lett 116:075501CrossRefGoogle Scholar
  21. 21.
    Zolotorevsky N, Rybin V, Ushanova E, Brodova I, Petrova A, Ermakova NY (2017) Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing. Lett Mater 7:363CrossRefGoogle Scholar
  22. 22.
    Caballero V, Varma S (1999) Effect of stacking fault energy and strain rate on the microstructural evolution during room temperature tensile testing in Cu and Cu-Al dilute alloys. J Mater Sci 34:461–468.  https://doi.org/10.1023/A:1004526208389 CrossRefGoogle Scholar
  23. 23.
    El-Danaf E, Kalidindi SR, Doherty RD (1999) Influence of grain size and stacking-fault energy on deformation twinning in FCC metals. Metall Mater Trans A 30:1223–1233CrossRefGoogle Scholar
  24. 24.
    Meyers M, Vöhringer O, Lubarda V (2001) The onset of twinning in metals: a constitutive description. Acta Mater 49:4025–4039CrossRefGoogle Scholar
  25. 25.
    Rohatgi A, Vecchio KS, Gray GT (2001) The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: deformation twinning, work hardening, and dynamic recovery. Metall Mater Trans A 32:135–145CrossRefGoogle Scholar
  26. 26.
    Han W, Zhang Z, Wu S, Li S (2008) Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals. Philos Mag 88:3011–3029CrossRefGoogle Scholar
  27. 27.
    Reed-Hill RE, Hirth JP, Rogers HC (1965) Deformation twinning: proceedings. Gordon & Breach, New YorkGoogle Scholar
  28. 28.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater 35:143–146CrossRefGoogle Scholar
  29. 29.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) The process of grain refinement in equal-channel angular pressing. Acta Mater 46:3317–3331CrossRefGoogle Scholar
  30. 30.
    Nakashima K, Horita Z, Nemoto M, Langdon TG (1998) Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater 46:1589–1599CrossRefGoogle Scholar
  31. 31.
    Segal V (1999) Equal channel angular extrusion: from macromechanics to structure formation. Mater Sci Eng A 271:322–333CrossRefGoogle Scholar
  32. 32.
    Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A 31:691–701CrossRefGoogle Scholar
  33. 33.
    Furukawa M, Horita Z, Nemoto M, Langdon T (2001) Processing of metals by equal-channel angular pressing. J Mater Sci 36:2835–2843.  https://doi.org/10.1023/A:1017932417043 CrossRefGoogle Scholar
  34. 34.
    Kim W, Hong S, Kim Y, Min S, Jeong H, Lee J (2003) Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater 51:3293–3307CrossRefGoogle Scholar
  35. 35.
    Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRefGoogle Scholar
  36. 36.
    Langdon TG (2007) The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A 462:3–11CrossRefGoogle Scholar
  37. 37.
    Figueiredo RB, Langdon TG (2009) Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing. J Mater Sci 44:4758–4762.  https://doi.org/10.1007/s10853-009-3725-z CrossRefGoogle Scholar
  38. 38.
    Lugo N, Llorca N, Sunol J, Cabrera J (2010) Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing. J Mater Sci 45:2264–2273.  https://doi.org/10.1007/s10853-009-4139-7 CrossRefGoogle Scholar
  39. 39.
    Hockauf M, Meyer LW, Nickel D, Alisch G, Lampke T, Wielage B, Krüger L (2008) Mechanical properties and corrosion behaviour of ultrafine-grained AA6082 produced by equal-channel angular pressing. J Mater Sci 43:7409.  https://doi.org/10.1007/s10853-008-2724-9 CrossRefGoogle Scholar
  40. 40.
    Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX (2006) Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater 54:655–665CrossRefGoogle Scholar
  41. 41.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater 1:45–49CrossRefGoogle Scholar
  42. 42.
    Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 50:5005–5020CrossRefGoogle Scholar
  43. 43.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47CrossRefGoogle Scholar
  44. 44.
    Kibey S, Liu JB, Johnson DD, Sehitoglu H (2007) Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater 55:6843–6851CrossRefGoogle Scholar
  45. 45.
    Li BQ, Sui ML, Li B, Ma E, Mao SX (2009) Reversible twinning in pure aluminum. Phys Rev Lett 102:205504CrossRefGoogle Scholar
  46. 46.
    Li B, Cao BY, Ramesh KT, Ma E (2009) A nucleation mechanism of deformation twins in pure aluminum. Acta Mate 57:4500–4507CrossRefGoogle Scholar
  47. 47.
    Shao YF, Wang SQ (2010) Quasicontinuum study on formation of fivefold deformation twin in nanocrystalline aluminum. Scripta Mater 62:419–422CrossRefGoogle Scholar
  48. 48.
    Suzuki H, Barrett C (1958) Deformation twinning in silver-gold alloys. Acta Metall 6:156–165CrossRefGoogle Scholar
  49. 49.
    Naeita N, Takamura J (1971) Deformation twinning in silver- and copper-alloy crystals. Philos Mag 29:1001–1028CrossRefGoogle Scholar
  50. 50.
    Xu Z, Li N, Jiang H, Liu L (2015) Deformation nanotwins in coarse-grained aluminum alloy at ambient temperature and low strain rate. Mater Sci Eng A 621:272–276CrossRefGoogle Scholar
  51. 51.
    Gray G (1988) Deformation twinning in Al-4.8 wt% Mg. Acta Metall 36:1745–1754CrossRefGoogle Scholar
  52. 52.
    Xue S, Kuo W, Li Q, Fan Z, Ding J, Su R, Wang H, Zhang X (2018) Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Mater 144:226–234CrossRefGoogle Scholar
  53. 53.
    Liu XY, Ercolessi F, Adams JB (2004) Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Model Simul Mater Sci 12:665CrossRefGoogle Scholar
  54. 54.
    Ercolessi F, Adams JB (1994) Interatomic potentials from first-principles calculations: the force-matching method. EPL-Europhys Lett 26:583CrossRefGoogle Scholar
  55. 55.
    Ackland GJ, Thetford R (1987) An improved N-body semi-empirical model for body-centred cubic transition metals. Phil Mag A 56:15–30CrossRefGoogle Scholar
  56. 56.
    Tang MX, E JC, Wang L, Luo SN (2017) Loading-path dependent deformation of nanocrystalline Ta under single-and double-shock, and quasi-isentropic compression. J Appl Phys 121:115901CrossRefGoogle Scholar
  57. 57.
    Wang L, E JC, Cai Y, Zhao F, Fan D, Luo SN (2015) Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction. J Appl Phys 117:084301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Technologies of Materials, Ministry of EducationSouthwest Jiaotong UniversityChengduPeople’s Republic of China
  2. 2.The Peac Institute of Multiscale SciencesChengduPeople’s Republic of China
  3. 3.College of ScienceHunan Agricultural UniversityChangshaPeople’s Republic of China

Personalised recommendations