Journal of Materials Science

, Volume 54, Issue 5, pp 4011–4023 | Cite as

Plasma-produced ZnO nanorod arrays as an antireflective layer in c-Si solar cells

  • Feifei Huang
  • Bin Guo
  • Shuai Li
  • Junchi Fu
  • Ling Zhang
  • Guanhua Lin
  • Qinru Yang
  • Qijin ChengEmail author
Electronic materials


In this work, we develop a simple customized radio-frequency plasma-enhanced horizontal tube furnace deposition system to directly grow high-quality ZnO nanorod arrays on zinc films and investigate their application as an antireflective layer in n+pp+ monocrystalline silicon (c-Si) solar cells. Field emission scanning electron microscope, X-ray diffractometer, and transmission electron microscope studies reveal that ZnO nanorod arrays feature a perfect crystalline wurtzite structure and grow preferentially along [0001] direction. The antireflective performance of ZnO nanorod arrays is confirmed by Fresnel coefficient matrix method and MATLAB software calculation. Furthermore, PC1D simulation demonstrates that the photovoltaic property for c-Si solar cells of the pyramid-textured front surface using ZnO nanorod arrays as an antireflective layer is much better than that for the other three types of c-Si solar cells (i.e., c-Si solar cells of the pyramid-textured front surface without using any antireflective layer, c-Si solar cells of the planar front surface using ZnO nanorod arrays as an antireflective layer, as well as c-Si solar cells of the planar front surface without using any antireflective layer). In particular, the photovoltaic conversion efficiency of 20.23% has been achieved for c-Si solar cells of the pyramid-textured front surface using ZnO nanorod arrays as an antireflective layer. This work is highly relevant to the development of an advanced process for the realization of high-efficiency, low-cost, and stable solar cells.



This work was supported by Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20170306141238532; Project name: Research on the fabrication of graphene nanowalls and relevant application in the Si-based heterojunction solar cells), China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Reynolds DC, Look DC, Jogai B, Litton CW, Cantwell G, Harsch WC (1999) Valence-band ordering in ZnO. Phys Rev B 60:2340–2344CrossRefGoogle Scholar
  2. 2.
    Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng, B 80:383–387CrossRefGoogle Scholar
  3. 3.
    Chang YM, Shieh J, Chu PY, Lee HY, Lin CM, Juang JY (2011) Enhanced free exciton and direct band-edge emissions at room temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition. ACS Appl Mater Interface 3:4415–4419CrossRefGoogle Scholar
  4. 4.
    Wu LL, Wu YS (2007) Synthesis and optical characteristic of ZnO nanorod. J Mater Sci 42:406–408. CrossRefGoogle Scholar
  5. 5.
    Tang H, Chang JC, Shan YY, Ma DDD, Liu TY, Zapien JA, Lee CS, Lee ST (2009) Growth mechanism of ZnO nanowires via direct Zn evaporation. J Mater Sci 44:563–571. CrossRefGoogle Scholar
  6. 6.
    Suh HW, Kim GY, Jung YS, Choi WK, Byun D (2005) Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis. J Appl Phys 97:044305CrossRefGoogle Scholar
  7. 7.
    Hughes WL, Wang ZL (2005) Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl Phys Lett 86:043106CrossRefGoogle Scholar
  8. 8.
    Huang SY, Cheng QJ, Xu S, Wei DY, Zhou HP, Long JD, Levchenko I, Ostrikov K (2012) Self-organized ZnO nanodot arrays: effective control using SiNx interlayers and low-temperature plasmas. J Appl Phys 111:036101CrossRefGoogle Scholar
  9. 9.
    Zhong XX, Wu XC, Ostrikov K (2010) Pulsed i-PVD of dielectric nanodot arrays using a nanoporous template. Plasma Process Polym 6:161–169CrossRefGoogle Scholar
  10. 10.
    Cher W, Yick S, Xu S, Han ZJ, Ostrikov K (2011) Structural, optical and electrical properties of Al-doped ZnO transparent conducting oxide for solar cell applications. Funct Mater Lett 4:401–405CrossRefGoogle Scholar
  11. 11.
    Rakshit T, Mondal SP, Manna I, Ray SK (2012) CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices. ACS Appl Mater Interface 4:6085–6095CrossRefGoogle Scholar
  12. 12.
    Ji LW, Peng SM, Su YK, Young SJ, Wu CZ, Cheng WB (2009) Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays. Appl Phys Lett 94:203106CrossRefGoogle Scholar
  13. 13.
    An SJ, Chae JH, Yi GC, Park GH (2008) Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl Phys Lett 92:121108CrossRefGoogle Scholar
  14. 14.
    Willander M, Nur O, Zhao QX, Yang LL, Lorenz M, Cao BQ, Pérez JZ, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Mofor AC, Postels B, Waag A, Boukos N, Travlos A, Kwack HS, Guinard J, Dang DLS (2009) Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20:332001CrossRefGoogle Scholar
  15. 15.
    Lupan O, Chai GY, Chow L (2008) Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron Eng 85:2220–2225CrossRefGoogle Scholar
  16. 16.
    Wang LW, Kang YF, Liu XH, Zhang SM, Huang WP, Wang SR (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuat B-Chem 162:237–243CrossRefGoogle Scholar
  17. 17.
    Chen JY, Sun KW (2010) Growth of vertically aligned ZnO nanorod arrays as anti-reflection layer on silicon solar cell. Sol Energy Mater Sol C 94:930–940CrossRefGoogle Scholar
  18. 18.
    Áe L, Kieven D, Chen J, Klenk R, Rissom T, Tang Y, Lux-Steiner MC (2010) ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog Photovolt Res Appl 18:209–213CrossRefGoogle Scholar
  19. 19.
    Pu XX, Liu J, Liang J, Xia YS, Feng WL, Wang YW, Yu XB (2014) Effective CdS/ZnO nanorod arrays as antireflection coatings for light trapping in c-Si solar cells. RSC Adv 4:23149–23154CrossRefGoogle Scholar
  20. 20.
    Ahrlich M, Sergeev O, Juilfs M, Neumüeller A, Vehse M, Agert C (2016) Improved light management in silicon heterojunction solar cells by application of a ZnO nanorod antireflective layer. Energy Procedia 92:284–290CrossRefGoogle Scholar
  21. 21.
    Umar A, Karunagaran B, Suh EK, Hahn YB (2006) Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 17:4072–4077CrossRefGoogle Scholar
  22. 22.
    Park JY, Lee DJ, Kim SS (2005) Size control of ZnO nanorod arrays grown by metalorganic chemical vapour deposition. Nanotechnology 16:2044–2047CrossRefGoogle Scholar
  23. 23.
    Lee DJ, Park JY, Yun YS, Hong YS, Moon JH, Lee BT, Kim SS (2005) Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates. J Cryst Growth 276:458–464CrossRefGoogle Scholar
  24. 24.
    Kim DC, Kong BH, Cho HK, Park DJ, Lee JY (2007) Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition. Nanotechnology 18:015603CrossRefGoogle Scholar
  25. 25.
    Heo YW, Varadarajan V, Kaufman M, Kim K, Norton DP, Ren F, Fleming PH (2002) Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl Phys Lett 81:3046–3048CrossRefGoogle Scholar
  26. 26.
    Li QW, Bian JM, Sun J, Wang JC, Luo YM, Sun KT, Yu DQ (2010) Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl Surf Sci 256:1698–1702CrossRefGoogle Scholar
  27. 27.
    Yi SH, Choi SK, Jang JM, Kim JA, Jung WG (2007) Low-temperature growth of ZnO nanorods by chemical bath deposition. J Colloid Interface Sci 313:705–710CrossRefGoogle Scholar
  28. 28.
    Bekermann D, Gasparotto A, Barreca D, Bovo L, Devi A, Fischer RA, Lebedev OI, Maccato C, Tondello E, Tendeloo GV (2010) Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. Cryst Growth Des 10:2011–2018CrossRefGoogle Scholar
  29. 29.
    Richards BS (2003) Single-material TiO2 double-layer antireflection coatings. Sol Energy Mater Sol C 79:369–390CrossRefGoogle Scholar
  30. 30.
    Cao XL, Chen YM (2011) Simulation and analysis on the property of aluminum back-surface-field of mono-crystalline silicon solar cells. J Optoelectron Adv M 13:432–438Google Scholar
  31. 31.
    Spinelli P, Verschuuren MA, Polman A (2012) Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692CrossRefGoogle Scholar
  32. 32.
    Wilson SJ, Hutley MC (1982) The optical properties of ‘Moth Eye’ antireflection surfaces. Opt Acta 29:993–1009CrossRefGoogle Scholar
  33. 33.
    Rackauskas S, Nasibulin AG, Jiang H, Tian Y, Statkute G, Shandakov SD, Lipsanen H, Kauppinen EI (2009) Mechanistic investigation of ZnO nanowire growth. Appl Phys Lett 95:183114CrossRefGoogle Scholar
  34. 34.
    Cao BQ, Li Y, Duan GT, Cai WP (2006) Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method. Cryst Growth Des 6:1091–1094CrossRefGoogle Scholar
  35. 35.
    Florica C, Preda N, Costas A, Zgura I, Enculescu I (2016) ZnO nanowires grown directly on zinc foils by thermal oxidation in air: wetting and water adhesion properties. Mater Lett 170:156–159CrossRefGoogle Scholar
  36. 36.
    Bruggeman VD (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann Phys 416:636–664CrossRefGoogle Scholar
  37. 37.
    Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505CrossRefGoogle Scholar
  38. 38.
    Stavenga DG, Foletti S, Palasantzas G, Arikawa K (2006) Light on the moth-eye corneal nipple array of butterflies. Proc R Soc B 273:661–667CrossRefGoogle Scholar
  39. 39.
    Nowak RE, Vehse M, Sergeev O, Voss T, Seyfried M, Maydell KV, Agert C (2014) ZnO nanorods with broadband antireflective properties for improved light management in silicon thin-film solar cells. Adv Opt Mater 2:94–99CrossRefGoogle Scholar
  40. 40.
    Tiedje T, Yablonovitch E, Cody GD, Brooks BG (1984) Limiting efficiency of silicon solar cells. IEEE Trans Electron Dev 31:711–716CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Feifei Huang
    • 1
    • 2
  • Bin Guo
    • 1
    • 2
  • Shuai Li
    • 3
  • Junchi Fu
    • 1
    • 2
  • Ling Zhang
    • 1
    • 2
  • Guanhua Lin
    • 1
    • 2
  • Qinru Yang
    • 1
    • 2
  • Qijin Cheng
    • 1
    • 2
    Email author
  1. 1.College of EnergyXiamen UniversityXiamenPeople’s Republic of China
  2. 2.Shenzhen Research Institute of Xiamen UniversityShenzhenPeople’s Republic of China
  3. 3.College of Physics and Information EngineeringQuanzhou Normal UniversityQuanzhouPeople’s Republic of China

Personalised recommendations