Advertisement

Journal of Materials Science

, Volume 54, Issue 5, pp 3710–3725 | Cite as

Characterization of grain boundary disconnections in SrTiO3 Part II: the influence of superimposed disconnections on image analysis

  • Hadas Sternlicht
  • Wolfgang Rheinheimer
  • Judy Kim
  • Emanuela Liberti
  • Angus I. Kirkland
  • Michael J. Hoffmann
  • Wayne D. Kaplan
Ceramics
  • 37 Downloads

Abstract

Disconnections were recently shown to play a role in the mechanism of grain boundary motion in general grain boundaries in SrTiO3. In this work, we demonstrate the existence of disconnections in the viewing direction along the projected thickness of transmission electron microscopy samples and characterize possible aspects of the structure of these disconnections. We show that the presence of steps along the viewing direction may result in the appearance of a disordered region at the boundary, while it is actually composed of ordered crystalline material. We discuss the subsequent complications in analysis of transmission electron microscopy data and strict meaning of the term “edge-on” for grain boundaries.

Notes

Acknowledgements

This work was partially supported via a German-Israel Fund (GIF) Grant No. I-1276-401.10/2014. The authors acknowledge the British Council for funding a visit by HS to the UK. AIK acknowledges the European Union under the Seventh Framework Programme under a contract for an Integrated Infrastructure Initiative Reference 312483-ESTEEM2. Financial support from EPSRC (Platform Grant EP/K032518/1) is also acknowledged.

References

  1. 1.
    Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92:233–242.  https://doi.org/10.1016/s0304-3991(02)00139-0 CrossRefGoogle Scholar
  2. 2.
    Urban KW (2008) Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321:506–510.  https://doi.org/10.1126/science.1152800 CrossRefGoogle Scholar
  3. 3.
    Tillmann K, Houben L, Thust A, Urban K (2006) Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: synergetic tools for the imaging of lattice imperfections in crystalline solids at atomic resolution. J Mater Sci 41:4420–4433.  https://doi.org/10.1007/s10853-006-0154-0 CrossRefGoogle Scholar
  4. 4.
    Houben L (2006) Aberration-corrected HRTEM of defects in strained La2CuO4 thin films grown on SrTiO3. J Mater Sci 41:4413–4419.  https://doi.org/10.1007/s10853-006-0151-3 CrossRefGoogle Scholar
  5. 5.
    Kirkland AI, Meyer RR (2004) “Indirect” high-resolution transmission electron microscopy: aberration measurement and wavefunction reconstruction. Microsc Microanal 10:401–413.  https://doi.org/10.1017/S1431927604040437 CrossRefGoogle Scholar
  6. 6.
    Allen LJ, McBride W, O’Leary NL, Oxley MP (2004) Exit wave reconstruction at atomic resolution. Ultramicroscopy 100:91–104.  https://doi.org/10.1016/j.ultramic.2004.01.012 CrossRefGoogle Scholar
  7. 7.
    Haigh S, Kirkland A (2012) High resolution exit wave restoration. In: Vogt T, Dahmen W, Binev P (eds) Modeling nanoscale imaging in electron microscopy. Springer, Berlin, pp 41–72CrossRefGoogle Scholar
  8. 8.
    Haigh SJ, Sawada H, Takayanagi K, Kirkland AI (2010) Exceeding conventional resolution limits in high-resolution transmission electron microscopy using tilted illumination and exit-wave restoration. Microsc Microanal 16:409–415.  https://doi.org/10.1017/S1431927610093359 CrossRefGoogle Scholar
  9. 9.
    Kirkland AI, Saxton WO, Chau KL, Tsuno K, Kawasaki M (1995) Super-resolution by aperture synthesis: tilt series reconstruction in CTEM. Ultramicroscopy 57:355–374.  https://doi.org/10.1016/0304-3991(94)00191-O CrossRefGoogle Scholar
  10. 10.
    Kirkland AI, Saxton WO, Chand G (1997) Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 46:11–22CrossRefGoogle Scholar
  11. 11.
    Haigh SJ, Sawada H, Kirkland AI (2009) Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction. Philos Trans R Soc A Math Phys Eng Sci 367:3755–3771.  https://doi.org/10.1098/rsta.2009.0124 CrossRefGoogle Scholar
  12. 12.
    Chang L-Y, Kirkland AI (2006) Comparisons of linear and nonlinear image restoration. Microsc Microanal 12:469–475.  https://doi.org/10.1017/S1431927606060582 CrossRefGoogle Scholar
  13. 13.
    Kirkland EJ (1982) Nonlinear high resolution image processing of conventional transmission electron micrographs. Ultramicroscopy 9:45–64.  https://doi.org/10.1016/0304-3991(82)90228-5 CrossRefGoogle Scholar
  14. 14.
    Kirkland EJ (1984) Improved high resolution image processing of bright field electron micrographs. Ultramicroscopy 15:151–172.  https://doi.org/10.1016/0304-3991(84)90037-8 CrossRefGoogle Scholar
  15. 15.
    Coene WMJ, Thust A, de Beeck MO, Van Dyck D (1996) Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64:109–135.  https://doi.org/10.1016/0304-3991(96)00010-1 CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Meyer RR, Kirkland AI, Saxton WO (2002) A new method for the determination of the wave aberration function for high resolution TEM: 1. Measurement of the symmetric aberrations. Ultramicroscopy 92:89–109.  https://doi.org/10.1016/S0304-3991(02)00071-2 CrossRefGoogle Scholar
  18. 18.
    Meyer RR, Kirkland AI, Saxton WO (2004) A new method for the determination of the wave aberration function for high-resolution TEM.: 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99:115–123.  https://doi.org/10.1016/j.ultramic.2003.11.001 CrossRefGoogle Scholar
  19. 19.
    Kirkland AI, Chang SL-Y, Hutchison JL (2007) Atomic resolution transmission electron microscopy. In: Hawkes PW, Spence JCH (eds) Science of microscopy. Springer, New York, pp 3–64CrossRefGoogle Scholar
  20. 20.
    Sternlicht H, Rheinheimer W, Hoffmann MJ, Kaplan WD (2016) The mechanism of grain boundary motion in SrTiO3. J Mater Sci 51:467–475.  https://doi.org/10.1007/s10853-015-9058-1 CrossRefGoogle Scholar
  21. 21.
    Rheinheimer W, Hoffmann MJ (2015) Non-arrhenius behavior of grain growth in strontium titanate: new evidence for a structural transition of grain boundaries. Scr Mater 101:68–71.  https://doi.org/10.1016/j.scriptamat.2015.01.021 CrossRefGoogle Scholar
  22. 22.
    Rheinheimer W, Bäurer M, Handwerker CA, Blendell JE, Hoffmann MJ (2015) Growth of single crystalline seeds into polycrystalline strontium titanate: anisotropy of the mobility, intrinsic drag effects and kinetic shape of grain boundaries. Acta Mater 95:111–123.  https://doi.org/10.1016/j.actamat.2015.05.019 CrossRefGoogle Scholar
  23. 23.
    Baurer M, Kungl H, Hoffmann MJ (2009) Influence of Sr/Ti stoichiometry on the densification behavior of strontium titanate. J Am Ceram Soc 92:601–606.  https://doi.org/10.1111/j.1551-2916.2008.02920.x CrossRefGoogle Scholar
  24. 24.
    Rheinheimer W, Bäurer M, Chien H, Rohrer GS, Handwerker CA, Blendell JE, Hoffmann MJ (2015) The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution. Acta Mater 82:32–40.  https://doi.org/10.1016/j.actamat.2014.08.065 CrossRefGoogle Scholar
  25. 25.
    Baram M, Kaplan WD (2008) Quantitative HRTEM analysis of FIB prepared specimens. J Microsc 232:395–405.  https://doi.org/10.1111/j.1365-2818.2008.02134.x CrossRefGoogle Scholar
  26. 26.
    Sternlicht H, Rheinheimer W, Dunin-Borkowski RE, Hoffmann MJ, Kaplan WD (2018) Characterization of grain boundary disconnections in SrTiO3 Part I: the dislocation component of grain boundary disconnections. J Mater Sci.  https://doi.org/10.1007/s10853-018-3096-4 Google Scholar
  27. 27.
    Williams DB, Carter CB (2009) Transmission electron microscopy. Springer, New YorkCrossRefGoogle Scholar
  28. 28.
    Cowley JM, Moodie AF (1957) Fourier images: I—the point source. Proc Phys Soc Sect B 70:486–496CrossRefGoogle Scholar
  29. 29.
    Cowley JM, Moodie AF (1957) Fourier images: II—the out-of-focus patterns. Proc Phys Soc Sect B 70:497–504CrossRefGoogle Scholar
  30. 30.
    Cowley JM, Moodie AF (1957) Fourier images: III—finite sources. Proc Phys Soc Sect B 70:505–513CrossRefGoogle Scholar
  31. 31.
    Cowley JM, Moodie AF (1960) Fourier images IV: the phase grating. Proc Phys Soc 76:378–384CrossRefGoogle Scholar
  32. 32.
    Stadelmann PA (1987) EMS—a software package for electron-diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–145.  https://doi.org/10.1016/0304-3991(87)90080-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EngineeringBrown UniversityProvidenceUSA
  2. 2.Materials EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Department of MaterialsUniversity of OxfordOxfordUK
  4. 4.Electron Physical Sciences Imaging CentreDiamond Lightsource Ltd.DidcotUK
  5. 5.Karlsruhe Institute of Technology, Institute of Applied MaterialsKarlsruheGermany
  6. 6.Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations