Journal of Materials Science

, Volume 54, Issue 5, pp 3671–3693 | Cite as

High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes

  • Yang Wang
  • Emily Sahadeo
  • Gary Rubloff
  • Chuan-Fu LinEmail author
  • Sang Bok LeeEmail author


Li metal has the highest specific capacity (3860 mA h g−1) and the lowest electrochemical potential (− 3.04 V vs. SHE) of available metal anodes. Together with the high specific capacity of sulfur cathodes (1670 mA h g−1), Li metal–S batteries are a promising candidate to achieve high energy density batteries for electric vehicles and future industry. However, Li metal anodes suffer from corrosive reactions with electrolytes, a theoretically infinite volume change, and the growth of dendrites during electrochemical cycling. To realize the practical application of Li metal–S batteries, protective layers or artificial solid-electrolyte interphase (ASEI) layers have been applied to the surface of Li metal. These ASEI layers demonstrate capabilities to suppress the growth of dendrites and mitigate side reactions, which enhance the performance and safety of Li metal anodes in liquid-electrolyte systems, though there are still limitations and challenges. The development of solid-state electrolytes as artificial SEIs provides a promising route to suppress the issues of dendrite formation and the polysulfide “shuttle effect” in Li–S chemistry; however, the improvement in the interfacial compatibility and stability between the Li metal and the solid-state electrolyte is crucially needed. In this review, we summarize different types of ASEI layers used to protect Li metal, especially in Li–S batteries, with both liquid- and solid-electrolyte systems. We also briefly introduce the concept of anode protection of Mg metal and its application in Mg–S batteries. Perspectives regarding the further development and improvement of ASEI layers for Li metal and Mg metal are discussed.



This work was supported as part of the NEES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award #DESC0001160.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29. Google Scholar
  2. 2.
    Xu J, Ma J, Fan Q, Guo S, Dou S (2017) Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv Mater 29(28):1606454-1–1606454-20. Google Scholar
  3. 3.
    Lochala J, Liu D, Wu B, Robinson C, Xiao J (2017) Research progress toward the practical applications of lithium–sulfur batteries. ACS Appl Mater Interfaces 9(29):24407–24421. Google Scholar
  4. 4.
    Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau FF (2015) Review on Li–sulfur battery systems: an integral perspective. Adv Energy Mater 5(16):1500212. Google Scholar
  5. 5.
    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206. Google Scholar
  6. 6.
    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537. Google Scholar
  7. 7.
    Cao R, Xu W, Lv D, Xiao J, Zhang J-G (2015) Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater 5(16):1402273-1–1402273-23. Google Scholar
  8. 8.
    Cheng X-B, Zhang R, Zhao C-Z, Wei F, Zhang J-G, Zhang Q (2015) A review of solid electrolyte interphases on lithium metal anode. Adv Sci 3(3):1500213-1–1500213-20. Google Scholar
  9. 9.
    Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y (2016) Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 7:10992-1–10992-9. Accessed 27 July 2018
  10. 10.
    Mikhaylik Y (2006) Methods of charging lithium sulfur cells. Google PatentsGoogle Scholar
  11. 11.
    Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89(2):206–218. Google Scholar
  12. 12.
    Yang C, Fu K, Zhang Y, Hitz E, Hu L (2017) Protected lithium-metal anodes in batteries: from liquid to solid. Adv Mater 29(36):1701169-1–1701169-28. Google Scholar
  13. 13.
    Tao T, Lu S, Fan Y, Lei W, Huang S, Chen Y (2017) Anode improvement in rechargeable lithium–sulfur batteries. Adv Mater 29(48):1700542. Google Scholar
  14. 14.
    Lin C-F, Qi Y, Gregorczyk K, Lee SB, Rubloff GW (2018) Nanoscale protection layers to mitigate degradation in high-energy electrochemical energy storage systems. Acc Chem Res 51(1):97–106. Google Scholar
  15. 15.
    Zu C, Azimi N, Zhang Z, Manthiram A (2015) Insight into lithium-metal anodes in lithium-sulfur batteries with a fluorinated ether electrolyte. J Mater Chem A 3(28):14864–14870. Google Scholar
  16. 16.
    Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362. Accessed 27 July 2018
  17. 17.
    Zhao C-Z, Cheng X-B, Zhang R, Peng H-J, Huang J-Q, Ran R, Huang Z-H, Wei F, Zhang Q (2016) Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater 3:77–84. Google Scholar
  18. 18.
    Adams BD, Carino EV, Connell JG, Han KS, Cao R, Chen J, Zheng J, Li Q, Mueller KT, Henderson WA, Zhang J-G (2017) Long term stability of Li–S batteries using high concentration lithium nitrate electrolytes. Nano Energy 40:607–617. Google Scholar
  19. 19.
    Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103-1–16103-16. Google Scholar
  20. 20.
    Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium–sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201. Google Scholar
  21. 21.
    Zhao H, Deng N, Yan J, Kang W, Ju J, Ruan Y, Wang X, Zhuang X, Li Q, Cheng B (2018) A review on anode for lithium–sulfur batteries: progress and prospects. Chem Eng J 347:343–365. Google Scholar
  22. 22.
    Chen L, Connell JG, Nie A, Huang Z, Zavadil KR, Klavetter KC, Yuan Y, Sharifi-Asl S, Shahbazian-Yassar R, Libera JA, Mane AU, Elam JW (2017) Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J Mater Chem A 5(24):12297–12309. Google Scholar
  23. 23.
    Wang L, Zhang L, Wang Q, Li W, Wu B, Jia W, Wang Y, Li J, Li H (2018) Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater 10:16–23. Google Scholar
  24. 24.
    Kozen AC, Lin C-F, Pearse AJ, Schroeder MA, Han X, Hu L, Lee S-B, Rubloff GW, Noked M (2015) Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9(6):5884–5892. Google Scholar
  25. 25.
    Jing HK, Kong LL, Liu S, Li GR, Gao XP (2015) Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery. J Mater Chem A 3(23):12213–12219Google Scholar
  26. 26.
    Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson WA, Zhang Y, Zhang J-G (2015) Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15:135–144. Google Scholar
  27. 27.
    Kanamura K, Shiraishi S, Zi Takehara (1996) Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J Electrochem Soc 143(7):2187–2197Google Scholar
  28. 28.
    Av Cresce, Russell SM, Baker DR, Gaskell KJ, Xu K (2014) In situ and quantitative characterization of solid electrolyte interphases. Nano Lett 14(3):1405–1412. Google Scholar
  29. 29.
    Peng Z, Zhao N, Zhang Z, Wan H, Lin H, Liu M, Shen C, He H, Guo X, Zhang J-G, Wang D (2017) Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy 39:662–672. Google Scholar
  30. 30.
    Lin D, Liu Y, Chen W, Zhou G, Liu K, Dunn B, Cui Y (2017) Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett 17(6):3731–3737. Google Scholar
  31. 31.
    Pang Q, Liang X, Shyamsunder A, Nazar LF (2017) An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 1(4):871–886. Google Scholar
  32. 32.
    Lu Y, Gu S, Hong X, Rui K, Huang X, Jin J, Chen C, Yang J, Wen Z (2018) Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li–S battery. Energy Storage Mater 11:16–23. Google Scholar
  33. 33.
    Li NW, Yin YX, Yang CP, Guo YG (2015) An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater 28(9):1853–1858. Google Scholar
  34. 34.
    Wang L, Wang Q, Jia W, Chen S, Gao P, Li J (2017) Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J Power Sources 342:175–182. Google Scholar
  35. 35.
    Ma G, Wen Z, Wu M, Shen C, Wang Q, Jin J, Wu X (2014) A lithium anode protection guided highly-stable lithium–sulfur battery. Chem Commun 50(91):14209–14212. Google Scholar
  36. 36.
    Umeda GA, Menke E, Richard M, Stamm KL, Wudl F, Dunn B (2011) Protection of lithium metal surfaces using tetraethoxysilane. J Mater Chem 21(5):1593–1599. Google Scholar
  37. 37.
    Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K, Choi W (2018) 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat Nanotechnol 13(4):337–344. Google Scholar
  38. 38.
    Liu S, Li G-R, Gao X-P (2016) Lanthanum Nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium–sulfur battery. ACS Appl Mater Interfaces 8(12):7783–7789. Google Scholar
  39. 39.
    Yan J, Yu J, Ding B (2018) Mixed ionic and electronic conductor for Li-metal anode protection. Adv Mater 30(7):1705105. Google Scholar
  40. 40.
    Wei S, Choudhury S, Tu Z, Zhang K, Archer LA (2018) Electrochemical interphases for high-energy storage using reactive metal anodes. Acc Chem Res 51(1):80–88. Google Scholar
  41. 41.
    Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, Liu Y, Liu C, P-c Hsu, Bao Z, Cui Y (2017) Lithium metal anodes with an adaptive “solid–liquid” interfacial protective layer. J Am Chem Soc 139(13):4815–4820. Google Scholar
  42. 42.
    Lee Y-G, Ryu S, Sugimoto T, Yu T, W-s Chang, Yang Y, Jung C, Woo J, Kang SG, Han HN, Doo S-G, Hwang Y, Chang H, Lee J-M, Sun J-Y (2017) Dendrite-free lithium deposition for lithium metal anodes with interconnected microsphere protection. Chem Mater 29(14):5906–5914. Google Scholar
  43. 43.
    Zhu B, Jin Y, Hu X, Zheng Q, Zhang S, Wang Q, Zhu J (2016) Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater 29(2):1603755-1–1603755-6. Google Scholar
  44. 44.
    Ma G, Wen Z, Wang Q, Shen C, Jin J, Wu X (2014) Enhanced cycle performance of a Li–S battery based on a protected lithium anode. J Mater Chem A 2(45):19355–19359. Google Scholar
  45. 45.
    Luo J, Fang C-C, Wu N-L (2017) High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv Energy Mater 8(2):1701482-1–1701482-7. Google Scholar
  46. 46.
    Li N-W, Shi Y, Yin Y-X, Zeng X-X, Li J-Y, Li C-J, Wan L-J, Wen R, Guo Y-G (2017) A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew Chem Int Ed 57(6):1505–1509. Google Scholar
  47. 47.
    Zheng G, Wang C, Pei A, Lopez J, Shi F, Chen Z, Sendek AD, Lee H-W, Lu Z, Schneider H, Safont-Sempere MM, Chu S, Bao Z, Cui Y (2016) High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett 1(6):1247–1255. Google Scholar
  48. 48.
    Cheng X-B, Yan C, Chen X, Guan C, Huang J-Q, Peng H-J, Zhang R, Yang S-T, Zhang Q (2017) Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2(2):258–270. Google Scholar
  49. 49.
    Han Y, Duan X, Li Y, Huang L, Zhu D, Chen Y (2016) Improved cycling performances with high sulfur loading enabled by pre-treating lithium anode. Ionics 22(2):151–157. Google Scholar
  50. 50.
    Gu Y, Wang W-W, Li Y-J, Wu Q-H, Tang S, Yan J-W, Zheng M-S, Wu D-Y, Fan C-H, Hu W-Q, Chen Z-B, Fang Y, Zhang Q-H, Dong Q-F, Mao B-W (2018) Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat Commun 9(1):1339-1–1339-9. Google Scholar
  51. 51.
    Ma L, Kim MS, Archer LA (2017) Stable artificial solid electrolyte interphases for lithium batteries. Chem Mater 29(10):4181–4189. Google Scholar
  52. 52.
    Wang Y, Lin C-F, Rao J, Gaskell K, Rubloff G, Lee SB (2018) Electrochemically controlled solid electrolyte interphase layers enable superior Li–S batteries. ACS Appl Mater Interfaces 10:24554–24563. Google Scholar
  53. 53.
    Kozen AC, Lin C-F, Zhao O, Lee SB, Rubloff GW, Noked M (2017) Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase. Chem Mater 29(15):6298–6307. Google Scholar
  54. 54.
    Xu R, Zhang X-Q, Cheng X-B, Peng H-J, Zhao C-Z, Yan C, Huang J-Q (2018) Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater 28(8):1705838-1–1705838-7. Google Scholar
  55. 55.
    Lee H, Lee DJ, Kim Y-J, Park J-K, Kim H-T (2015) A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J Power Sources 284:103–108. Google Scholar
  56. 56.
    Zhao Y, Goncharova Lyudmila V, Sun Q, Li X, Lushington A, Wang B, Li R, Dai F, Cai M, Sun X (2018) Robust metallic lithium anode protection by the molecular-layer-deposition technique. Small Methods 2(5):1700417-1–1700417-8. Google Scholar
  57. 57.
    Liu Y, Lin D, Yuen Pak Y, Liu K, Xie J, Dauskardt Reinhold H, Cui Y (2016) An artificial solid electrolyte interphase with high li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29(10):1605531-1–1605531-8. Google Scholar
  58. 58.
    Liu W, Li W, Zhuo D, Zheng G, Lu Z, Liu K, Cui Y (2017) Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent Sci 3(2):135–140. Google Scholar
  59. 59.
    Yan K, Lee H-W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14(10):6016–6022. Google Scholar
  60. 60.
    Zhang YJ, Liu XY, Bai WQ, Tang H, Shi SJ, Wang XL, Gu CD, Tu JP (2014) Magnetron sputtering amorphous carbon coatings on metallic lithium: towards promising anodes for lithium secondary batteries. J Power Sources 266:43–50. Google Scholar
  61. 61.
    Zheng G, Lee SW, Liang Z, Lee H-W, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9:618–623. Accessed 1 Aug 2018
  62. 62.
    Kim J-S, Kim DW, Jung HT, Choi JW (2015) Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem Mater 27(8):2780–2787. Google Scholar
  63. 63.
    Zhang C, Huang Z, Lv W, Yun Q, Kang F, Yang Q-H (2017) Carbon enables the practical use of lithium metal in a battery. Carbon 123:744–755. Google Scholar
  64. 64.
    Kim MS, Kim M-S, Do V, Lim Young R, Nah In W, Archer LA, Cho WI (2017) Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields. Nano Energy 41:573–582. Google Scholar
  65. 65.
    Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456. Google Scholar
  66. 66.
    Y-b Yang, Y-x Liu, Song Z, Y-h Zhou, Zhan H (2017) Li+-permeable film on lithium anode for lithium sulfur battery. ACS Appl Mater Interfaces 9(44):38950–38958. Google Scholar
  67. 67.
    Peng Z, Wang S, Zhou J, Jin Y, Liu Y, Qin Y, Shen C, Han W, Wang D (2016) Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes. J Mater Chem A 4(7):2427–2432. Google Scholar
  68. 68.
    Wu M, Wen Z, Jin J, Chowdari BVR (2016) Trimethylsilyl chloride-modified Li anode for enhanced performance of Li–S cells. ACS Appl Mater Interfaces 8(25):16386. Google Scholar
  69. 69.
    Chang C-H, Chung S-H, Manthiram A (2017) Dendrite-free lithium anode via a homogenous Li-ion distribution enabled by a kimwipe paper. Adv Sustain Syst 1(1–2):1600034-1–1600034-5. Google Scholar
  70. 70.
    Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404Google Scholar
  71. 71.
    Wang Q, Jin J, Wu X, Ma G, Yang J, Wen Z (2014) A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. Phys Chem Chem Phys 16(39):21225–21229. Google Scholar
  72. 72.
    Yu X, Bi Z, Zhao F, Manthiram A (2016) Polysulfide-shuttle control in lithium–sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte. Adv Energy Mater 6(24):1601392. Google Scholar
  73. 73.
    Fu K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey SD, Dai J, Chen Y, Mo Y, Wachsman E, Hu L (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659Google Scholar
  74. 74.
    Choudhury S, Mangal R, Agrawal A, Archer LA (2015) A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun 6:10101-1–0101-9. Accessed 1 Aug 2018
  75. 75.
    Zhao-Karger Z, Zhao X, Wang D, Diemant T, Behm RJ, Fichtner M (2014) Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater 5(3):1401155-1–1401155-9. Google Scholar
  76. 76.
    Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G (2017) Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev 117(5):4287–4341. Google Scholar
  77. 77.
    Song J, Sahadeo E, Noked M, Lee SB (2016) Mapping the challenges of magnesium battery. J Phys Chem Lett 7(9):1736–1749. Google Scholar
  78. 78.
    Lu Z, Schechter A, Moshkovich M, Aurbach D (1999) On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem 466(2):203–217. Google Scholar
  79. 79.
    Arthur TS, Glans P-A, Singh N, Tutusaus O, Nie K, Liu Y-S, Mizuno F, Guo J, Alsem DH, Salmon NJ, Mohtadi R (2017) Interfacial insight from operando XAS/TEM for magnesium metal deposition with borohydride electrolytes. Chem Mater 29(17):7183–7188. Google Scholar
  80. 80.
    Ha S-Y, Lee Y-W, Woo SW, Koo B, Kim J-S, Cho J, Lee KT, Choi N-S (2014) Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6(6):4063–4073. Google Scholar
  81. 81.
    Shterenberg I, Salama M, Yoo HD, Gofer Y, Park J-B, Sun Y-K, Aurbach D (2015) Evaluation of (CF3SO2)2N − (TFSI) based electrolyte solutions for Mg batteries. J Electrochem Soc 162(13):A7118–A7128. Google Scholar
  82. 82.
    Yoo HD, Han S-D, Bolotin IL, Nolis GM, Bayliss RD, Burrell AK, Vaughey JT, Cabana J (2017) Degradation mechanisms of magnesium metal anodes in electrolytes based on (CF3SO2)2N at high current densities. Langmuir 33(37):9398–9406. Google Scholar
  83. 83.
    Wetzel DJ, Malone MA, Haasch RT, Meng Y, Vieker H, Hahn NT, Gölzhäuser A, Zuo J-M, Zavadil KR, Gewirth AA, Nuzzo RG (2015) Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling. ACS Appl Mater Interfaces 7(33):18406–18414. Google Scholar
  84. 84.
    Ding MS, Diemant T, Behm RJ, Passerini S, Giffin GA (2018) Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes. J Electrochem Soc 165(10):A1983–A1990Google Scholar
  85. 85.
    Kuwata H, Matsui M, Imanishi N (2017) Passivation layer formation of magnesium metal negative electrodes for rechargeable magnesium batteries. J Electrochem Soc 164(13):A3229–A3236Google Scholar
  86. 86.
    Tutusaus O, Mohtadi R, Singh N, Arthur TS, Mizuno F (2017) Study of electrochemical phenomena observed at the Mg metal/electrolyte interface. ACS Energy Lett 2(1):224–229. Google Scholar
  87. 87.
    Fotea C, Callaway J, Alexander MR (2006) Characterisation of the surface chemistry of magnesium exposed to the ambient atmosphere. Surf Interface Anal 38(10):1363–1371. Google Scholar
  88. 88.
    Connell JG, Genorio B, Lopes PP, Strmcnik D, Stamenkovic VR, Markovic NM (2016) Tuning the reversibility of Mg anodes via controlled surface passivation by H2O/Cl in organic electrolytes. Chem Mater 28(22):8268–8277. Google Scholar
  89. 89.
    Rajput NN, Seguin TJ, Wood BM, Qu X, Persson KA (2018) Elucidating solvation structures for rational design of multivalent electrolytes—a review. Top Curr Chem 376(3):19-1–19-46. Google Scholar
  90. 90.
    Yu Y, Baskin A, Valero-Vidal C, Hahn NT, Liu Q, Zavadil KR, Eichhorn BW, Prendergast D, Crumlin EJ (2017) Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack. Chem Mater 29(19):8504–8512. Google Scholar
  91. 91.
    Lowe JS, Siegel DJ (2018) Reaction pathways for solvent decomposition on magnesium anodes. J Phys Chem C 122(20):10714–10724. Google Scholar
  92. 92.
    Shterenberg I, Salama M, Gofer Y, Aurbach D (2017) Hexafluorophosphate-based solutions for Mg batteries and the importance of chlorides. Langmuir 33(37):9472–9478. Google Scholar
  93. 93.
    Muldoon J, Bucur CB, Oliver AG, Zajicek J, Allred GD, Boggess WC (2013) Corrosion of magnesium electrolytes: chlorides—the culprit. Energy Environ Sci 6(2):482–487.
  94. 94.
    Gao T, Noked M, Pearse AJ, Gillette E, Fan X, Zhu Y, Luo C, Suo L, Schroeder MA, Xu K, Lee SB, Rubloff GW, Wang C (2015) Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J Am Chem Soc 137(38):12388–12393. Google Scholar
  95. 95.
    Gao T, Hou S, Huynh K, Wang F, Eidson N, Fan X, Han F, Luo C, Mao M, Li X, Wang C (2018) Existence of solid electrolyte interphase in Mg batteries: Mg/S chemistry as an example. ACS Appl Mater Interfaces 10:14767–14776. Google Scholar
  96. 96.
    Li X, Gao T, Han F, Ma Z, Fan X, Hou S, Eidson N, Li W, Wang C (2018) Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv Energy Mater 8(7):1701728-1–1701728-6. Google Scholar
  97. 97.
    Son S-B, Gao T, Harvey SP, Steirer KX, Stokes A, Norman A, Wang C, Cresce A, Xu K, Ban C (2018) An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat Chem 10:532–539. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA
  2. 2.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.Graduate School of Nanoscience and TechnologyKAISTDaejeonSouth Korea

Personalised recommendations