Journal of Materials Science

, Volume 54, Issue 3, pp 2552–2565 | Cite as

Hollow silica–polyelectrolyte composite nanoparticles for controlled drug delivery

  • Qingsong Yang
  • Li LiEmail author
  • Fang Zhao
  • Haoya Han
  • Weihua Wang
  • Yuchuan Tian
  • Yunwei Wang
  • Zhishuang Ye
  • Xuhong GuoEmail author
Materials for life sciences


The stimulus-responsive drug delivery system has attracted increasing attention due to its ability to enhance therapeutic efficacy and reduce side effects. Herein, a pH and glutathione (GSH) dually responsive drug carrier, hollow silica–-polyelectrolyte composite nanoparticle, was successfully prepared by using a template of spherical polyelectrolyte brush (SPB) which consists of a polystyrene (PS) core and a densely grafted linear poly(acrylic acid) (PAA) shell. The existence of PAA chains and introduction of disulfide bonds in silica framework endow the composite nanoparticles with pH and GSH dually responsive properties which were confirmed by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). With doxorubicin hydrochloride (DOX) as the model drug, the loading content and encapsulation efficiency could reach up to 43% and 96%, respectively. The drug release behavior was investigated under various environments, showing that the drug release rate increased with the decrease in pH value and the increase in GSH concentration. The prepared hollow SiO2–PAA composite nanoparticles possess a great potential as carriers for controlled drug delivery.



We gratefully thank the financial support by the NSFC Grants (5171101370, 51773061 and 21476143) and 111 Project Grant (B08021). We also thank Shanghai Synchrotron Radiation Facility for its experimental support.

Compliance with ethical standards

Conflicts of interest

The authors declare no competing financial interest.


  1. 1.
    Liu CQ, Zhang Y, Liu M, Chen ZW, Lin YH, Li W, Cao FF, Liu Z, Ren JS, Qu XG (2017) A NIR-controlled cage mimicking system for hydrophobic drug mediated cancer therapy. Biomaterials 139:151–162CrossRefGoogle Scholar
  2. 2.
    Tian H, Luo ZY, Liu LL, Zheng MB, Chen Z, Ma AQ, Liang RJ, Han ZQ, Lu CY, Cai LT (2017) Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv Func Mater 27(38):7. CrossRefGoogle Scholar
  3. 3.
    Yang GB, Zhang R, Liang C, Zhao H, Yi X, Shen SD, Yang K, Cheng L, Liu Z (2018) Manganese dioxide coated WS2@Fe3O4/sSiO(2) nanocomposites for pH-responsive MR imaging and oxygen-elevated synergetic therapy. Small 14(2):9. CrossRefGoogle Scholar
  4. 4.
    Joo KI, Xiao L, Liu SL, Liu YR, Lee CL, Conti PS, Wong MK, Li ZB, Wang P (2013) Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials 34(12):3098–3109CrossRefGoogle Scholar
  5. 5.
    Chen W, Zhong P, Meng FH, Cheng R, Deng C, Feijen J, Zhong ZY (2013) Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. J Control Release 169(3):171–179CrossRefGoogle Scholar
  6. 6.
    Wang Y, Wang J, Yuan Z, Han H, Li T, Li L, Guo X (2017) Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism. Colloids Surf B 152:252CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Lin LN, Lu Y, Chen SF, Dong L, Yu SH (2010) Templating synthesis of preloaded Doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv Mater 22(46):5255–5259CrossRefGoogle Scholar
  8. 8.
    Vallet-Regi M, Ramila A, del Real RP, Perez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311CrossRefGoogle Scholar
  9. 9.
    Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Func Mater 17(8):1225–1236CrossRefGoogle Scholar
  10. 10.
    Fan W, Lu N, Huang P, Liu Y, Yang Z, Wang S, Yu G, Liu Y, Hu J, He Q (2017) Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer Starving-like/gas therapy. Angew Chem Int Edit 129(5):1229–1233CrossRefGoogle Scholar
  11. 11.
    Zhu YF, Shi JL, Li YS, Chen HR, Shen WH, Dong XP (2005) Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous Mesoporous Mat 85(1–2):75–81CrossRefGoogle Scholar
  12. 12.
    Zhu Y, Prof JS, Shen W, Dong X, Feng J, Ruan M, Li Y (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew Chem Int Edit 44(32):5083–5087CrossRefGoogle Scholar
  13. 13.
    Li YH, Li N, Pan W, Yu ZZ, Yang LM, Tang B (2017) Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces 9(3):2123–2129CrossRefGoogle Scholar
  14. 14.
    Han L, Tang C, Yin CH (2016) pH-responsive core-shell structured nanoparticles for triple-stage targeted delivery of doxorubicin to tumors. ACS Appl Mater Interfaces 8(36):23498–23508CrossRefGoogle Scholar
  15. 15.
    Sahoo B, Devi KS, Banerjee R, Maiti TK, Pramanik P, Dhara D (2013) Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. Appl Mater Interfaces 5(9):3884–3893CrossRefGoogle Scholar
  16. 16.
    Yang GB, Sun XQ, Liu JJ, Feng LZ, Liu Z (2016) Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Adv Func Mater 26(26):4722–4732CrossRefGoogle Scholar
  17. 17.
    Hayashi K, Maruhashi T, Nakamura M, Sakamoto W, Yogo T (2016) One-pot synthesis of dual stimulus-responsive degradable hollow hybrid nanoparticles for image-guided trimodal therapy. Adv Func Mater 26(47):8613–8622CrossRefGoogle Scholar
  18. 18.
    Kang T, Li FY, Baik S, Shao W, Ling DS, Hyeon T (2017) Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 136:98–114CrossRefGoogle Scholar
  19. 19.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003CrossRefGoogle Scholar
  20. 20.
    Feng W, Zhou XJ, He CL, Qiu KX, Nie W, Chen L, Wang HS, Mo XM, Zhang YZ (2013) Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. J Mater Chem B 1(43):5886–5898CrossRefGoogle Scholar
  21. 21.
    Yuan L, Tang QQ, Yang D, Zhang JZ, Zhang FY, Hu JH (2011) preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J Phys Chem C 115(20):9926–9932CrossRefGoogle Scholar
  22. 22.
    Liu X, Yu D, Jin CS, Song XW, Cheng JZ, Zhao X, Qi XM, Zhang GX (2014) A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. New J Chem 38(10):4830–4836CrossRefGoogle Scholar
  23. 23.
    Huang L, Liu MY, Mao LC, Huang Q, Huang HY, Zeng GJ, Tian JW, Wen YQ, Zhang XY, Wei Y (2018) A facile FeBr 3 based photoATRP for surface modification of mesoporous silica nanoparticles for controlled delivery cisplatin. Appl Surf Sci 434:204–210CrossRefGoogle Scholar
  24. 24.
    Hong CY, Li X, Pan CY (2009) Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release. J Mater Chem 19(29):5155–5160CrossRefGoogle Scholar
  25. 25.
    Chen W, Shi Y, Feng H, Du M, Zhang JZ, Hu J, Yang D (2012) Preparation of copolymer paclitaxel covalently linked via a disulfide bond and its application on controlled drug delivery. J Phys Chem B 116(30):9231–9237CrossRefGoogle Scholar
  26. 26.
    Kim H, Kim S, Park C, Lee H, Park HJ, Kim C (2010) Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv Mater 22(38):4280–4283CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Shen C, Zhao N, Xu FJ (2017) Redox-responsive and drug-embedded silica nanoparticles with unique self-destruction features for efficient gene/drug codelivery. Adv Func Mater 27(10):12. CrossRefGoogle Scholar
  28. 28.
    Wu X, Wang ZY, Zhu D, Zong SF, Yang LP, Zhong Y, Cui YP (2013) pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer-lipid bilayer. ACS Appl Mater Interfaces 5(21):10895–10903CrossRefGoogle Scholar
  29. 29.
    Gosecka M, Gosecki M (2015) Characterization methods of polymer core-shell particles. Colloid Polym Sci 293(10):2719–2740CrossRefGoogle Scholar
  30. 30.
    Ruckdeschel P, Dulle M, Honold T, Forster S, Karg M, Retsch M (2016) Monodisperse hollow silica spheres: an in-depth scattering analysis. Nano Res 9(5):1366–1376CrossRefGoogle Scholar
  31. 31.
    Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116(18):11128–11180CrossRefGoogle Scholar
  32. 32.
    Guo X, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32(19):6043–6046CrossRefGoogle Scholar
  33. 33.
    Rosenfeldt S, Wittemann A, Ballauff M, Breininger E, Bolze J, Dingenouts N (2004) Interaction of proteins with spherical polyelectrolyte brushes in solution as studied by small-angle x-ray scattering. Phys Rev E 70(6):10. CrossRefGoogle Scholar
  34. 34.
    Henzler K, Wittemann A, Breininger E, Matthias Ballauff A, Rosenfeldt S (2007) Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle X-ray scattering and fourier transform infrared spectroscopy. Biomacromol 8(11):3674–3681CrossRefGoogle Scholar
  35. 35.
    Henzler K, Haupt B, Rosenfeldt S, Harnau L, Narayanan T, Ballauff M (2011) Interaction strength between proteins and polyelectrolyte brushes: a small angle X-ray scattering study. Phys Chem Chem Phys 13(39):17599–17605CrossRefGoogle Scholar
  36. 36.
    Wang W, Li L, Yu X, Han H, Guo X (2015) Distribution of magnetic nanoparticles in spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. J Polym Sci Part B Polym Phys 52(24):1681–1688CrossRefGoogle Scholar
  37. 37.
    Wang WH, Li L, Henzler K, Lu Y, Wang Jy, Han Hy, Tian YC, Wang YW, Zhou ZM, Lotze G, Narayanan T, Ballauff M, Guo XH (2017) Protein immobilization onto cationic spherical polyelectrolyte brushes studied by small angle X-ray scattering. Biomacromol 18(5):1574–1581CrossRefGoogle Scholar
  38. 38.
    Han HY, Li L, Wang WH, Tian YC, Wang YW, Wang JY, von Klitzing R, Guo XH (2017) Core-shell-corona silica hybrid nanoparticles templated by spherical polyelectrolyte brushes: a study by small angle X-ray scattering. Langmuir 33(38):9857–9865CrossRefGoogle Scholar
  39. 39.
    Han HY, Li L, Yang QS, Tian YC, Wang YW, Ye ZS, Klitzing R, Guo XH (2018) Characterization of hollow silica-polyelectrolyte composite nanoparticles by small-angle X-ray scattering. J Mater Sci 53(5):3210–3224. CrossRefGoogle Scholar
  40. 40.
    Dingenouts N, Norhausen C, Ballauff M (1998) Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering. Macromolecules 31(25):8912–8917CrossRefGoogle Scholar
  41. 41.
    Robillard Q, Guo X, Ballauff M, Narayanan T (2000) Spatial correlation of spherical polyelectrolyte brushes in salt-free solution as observed by small-angle X-ray scattering. Macromolecules 33(24):9109–9114CrossRefGoogle Scholar
  42. 42.
    Huang S, Yu X, Dong Y, Li L, Guo X (2012) Spherical polyelectrolyte brushes: ideal templates for preparing pH-sensitive core-shell and hollow silica nanoparticles. Colloids Surf A 415(415):22–30CrossRefGoogle Scholar
  43. 43.
    Li YJ, Guo WW, Su XD, Ou-Yang L, Dang M, Tao J, Lu GM, Teng ZG (2018) Small size mesoporous organosilica nanorods with different aspect ratios: synthesis and cellular uptake. J Colloid Interface Sci 512:134–140CrossRefGoogle Scholar
  44. 44.
    Niu YT, Yu MH, Zhang J, Yang YN, Xu C, Yeh M, Taran E, Hou JJC, Gray PP, Yu CZ (2015) Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J Mater Chem B 3(43):8477–8485CrossRefGoogle Scholar
  45. 45.
    Zhang HJ, Xu HJ, Wu MH, Zhong YF, Wang DH, Jiao Z (2015) A soft-hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J Mater Chem B 3(31):6480–6489CrossRefGoogle Scholar
  46. 46.
    Murugan B, Ramana LN, Gandhi S, Sethuraman S, Krishnan UM (2013) Engineered chemoswitchable mesoporous silica for tumor-specific cytotoxicity. J Mater Chem B 1(28):3494–3505CrossRefGoogle Scholar
  47. 47.
    Li DL, Huang X, Wu YD, Li JW, Cheng WL, He JM, Tian HY, Huang YD (2016) Preparation of pH-responsive mesoporous hydroxyapatite nanoparticles for intracellular controlled release of an anticancer drug. Biomater Sci 4(2):272–280CrossRefGoogle Scholar
  48. 48.
    Zhang Y, Chang YQ, Han L, Zhang Y, Chen ML, Shu Y, Wang JH (2017) Aptamer-anchored di-polymer shell-capped mesoporous carbon as a drug carrier for bi-trigger targeted drug delivery. J Mater Chem B 5(33):6882–6889CrossRefGoogle Scholar
  49. 49.
    Zhang M, Liu J, Kuang Y, Li QL, Zheng DW, Song QF, Chen H, Chen XQ, Xu YL, Li C, Jiang BB (2017) Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. Int J Biol Macromol 98:691–700. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.The Alle Chemical CompanyQingdaoPeople’s Republic of China
  3. 3.Engineering Research Center of Materials Chemical Engineering of Xinjiang BingtuanShihezi UniversityXinjiangPeople’s Republic of China

Personalised recommendations