Advertisement

Journal of Materials Science

, Volume 54, Issue 3, pp 2472–2482 | Cite as

Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries

  • Rui Zhang
  • Huiyong Li
  • Dan Sun
  • Jingyi Luan
  • Xiaobing Huang
  • Yougen Tang
  • Haiyan Wang
Energy materials
  • 177 Downloads

Abstract

Developing advanced MoS2 anode material for sodium ion battery is still a big challenge since it is hindered by poor cycling stability and rate capability owing to huge volume variation during charge/discharge processes and low conductivity. In this work, three-dimensional porous networks consisting of several-layered MoS2/C nanosheets are synthesized via a facile freeze-drying approach using NaCl as template. MoS2/C nanosheet networks demonstrate a high reversible capacity of 389 mAh g−1 and maintain 370 mAh g−1 after 100 cycles at 100 mA g−1, indicating excellent cycling stability. Good rate properties are also achieved with reversible capacities of 292, 256, 223, 174 mAh g−1 at 1, 2, 4, 6 A g−1, respectively. The excellent electrochemical performance can be ascribed to the unique three-dimensional networks consisting of few-layered MoS2 nanosheets, which facilitates sodium ion diffusion via near-surface reaction. Moreover, the robust three-dimensional carbon matrix can not only provide a conductive network, but also buffer the strain and maintain the electrode integrity during repeated sodiation/desodiation process. This strategy presents a new path for fabricating low-cost and high-yield three-dimensional metal sulfide (phosphide)/carbon composites for applications in energy-related fields and beyond.

Notes

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos. 21571189 and 21771062), Science and Technology Major Project of Hunan Province, China (2017GK1040), Science and Technology Plan Project of Hunan Province, China (Nos. 2016TP1007 and 2017TP1001), Hunan Provincial Natural Science Foundation of China (No. 2018JJ4002) and Innovation-Driven Project of Central South University (No. 2016CXS009).

Supplementary material

10853_2018_2991_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4549 kb)

References

  1. 1.
    Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607CrossRefGoogle Scholar
  2. 2.
    Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRefGoogle Scholar
  3. 3.
    Dipan K, Elahe T, Victor D, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448CrossRefGoogle Scholar
  4. 4.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRefGoogle Scholar
  5. 5.
    Pang Y, Zhang S, Liu L, Liang J, Sun Z, Wang Y, Xiao C, Ding D, Ding S (2017) Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. J Mater Chem A 5:17963–17972CrossRefGoogle Scholar
  6. 6.
    Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642CrossRefGoogle Scholar
  7. 7.
    Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte Interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRefGoogle Scholar
  8. 8.
    Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2016) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  9. 9.
    Yang W, Kai H, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033CrossRefGoogle Scholar
  10. 10.
    Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Cheng J, Yu Y (2014) Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6:693CrossRefGoogle Scholar
  11. 11.
    Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRefGoogle Scholar
  12. 12.
    Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072CrossRefGoogle Scholar
  13. 13.
    Zhang Q, He H, Huang X, Yan J, Tang Y, Wang H (2018) TiO2@C nanosheets with highly exposed (001) facets as a high-capacity anode for Na-ion batteries. Chem Eng J 332:57–65CrossRefGoogle Scholar
  14. 14.
    He H, Zhang Q, Wang H, Zhang H, Li J, Peng Z, Tang Y, Shao M (2017) Defect-rich TiO2−δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J Power Sources 354:179–188CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Lim YV, Huang S, Pam ME, Wang Y, Ang LK, Shi Y, Yang HY (2018) Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries. Small 14:1800898CrossRefGoogle Scholar
  16. 16.
    Choi SH, Ko YN, Lee J-K, Kang YC (2015) 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788CrossRefGoogle Scholar
  17. 17.
    Eames C, Islam MS (2014) Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J Am Chem Soc 136:16270–16276CrossRefGoogle Scholar
  18. 18.
    Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H (2018) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8:1702383CrossRefGoogle Scholar
  19. 19.
    Ren W, Zhang H, Guan C, Cheng C (2017) Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Funct Mater 27:1702116CrossRefGoogle Scholar
  20. 20.
    Kumar NA, Dar MA, Gul R, Baek JB (2015) Graphene and molybdenum disulfide hybrids: synthesis and applications. Mater Today 18:286–298CrossRefGoogle Scholar
  21. 21.
    Lu Y, Zhao Q, Zhang N, Lei K, Li F, Chen J (2016) Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater 26:911–918CrossRefGoogle Scholar
  22. 22.
    Li Y, Liang Y, Hernandez FCR, Yoo HD, An Q, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15:453–461CrossRefGoogle Scholar
  23. 23.
    Li X, Feng Z, Zai J, Ma Z-F, Qian X (2018) Incorporation of Co into MoS2/graphene nanocomposites: one effective way to enhance the cycling stability of Li/Na storage. J Power Sources 373:103–109CrossRefGoogle Scholar
  24. 24.
    Su D, Dou S, Wang G (2015) Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater 5:1401205CrossRefGoogle Scholar
  25. 25.
    Che Z, Li Y, Chen K, Wei M (2016) Hierarchical MoS2@RGO nanosheets for high performance sodium storage. J Power Sources 331:50–57CrossRefGoogle Scholar
  26. 26.
    Yang W, He L, Tian X, Yan M, Yuan H, Liao X, Meng J, Hao Z, Mai L (2017) Microdevices: carbon-MEMS-based alternating stacked MoS2@rGOCNT micro-supercapacitor with high capacitance and energy density. Small 13:1700639CrossRefGoogle Scholar
  27. 27.
    Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater Interfaces 7:12625–12630CrossRefGoogle Scholar
  28. 28.
    Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed Engl 53:2152–2156CrossRefGoogle Scholar
  29. 29.
    Hu X, Chen J, Zeng G, Jia J, Cai P, Chai G, Wen Z (2017) Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J Mater Chem A 5:23460–23470CrossRefGoogle Scholar
  30. 30.
    Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8:1728–1738CrossRefGoogle Scholar
  31. 31.
    Qin J, Wang T, Liu D, Liu E, Zhao N, Shi C, He F, Ma L, He C (2018) A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater 30:1704670CrossRefGoogle Scholar
  32. 32.
    Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 53:12794–12798CrossRefGoogle Scholar
  33. 33.
    Zhao C, Yu C, Qiu B, Zhou S, Zhang M, Huang H, Wang B, Zhao J, Sun X, Qiu J (2018) Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions. Adv Mater 30:1702486CrossRefGoogle Scholar
  34. 34.
    Teng Y, Zhao H, Zhang Z, Zhao L, Zhang Y, Li Z, Xia Q, Du Z, Świerczek K (2017) MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 119:91–100CrossRefGoogle Scholar
  35. 35.
    Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481CrossRefGoogle Scholar
  36. 36.
    Zhang P, Qin F, Zou L, Wang M, Zhang K, Lai Y, Li J (2017) Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries. Nanoscale 9:12189–12195CrossRefGoogle Scholar
  37. 37.
    David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRefGoogle Scholar
  38. 38.
    Lacey SD, Wan J, Cresce AVW, Russell SM, Dai J, Bao W, Xu K, Hu L (2015) Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett 15:1018–1024CrossRefGoogle Scholar
  39. 39.
    Xia Q, Tan Q (2018) MoS2 nanosheets strongly coupled with cotton-derived carbon microtubes for ultrafast sodium ion insertion. Mater Lett 228:285–288CrossRefGoogle Scholar
  40. 40.
    Zhang S, Yu X, Yu H, Chen Y, Gao P, Li C, Zhu C (2014) Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl Mater Interfaces 6:21880–21885CrossRefGoogle Scholar
  41. 41.
    Xie X, Ao Z, Su D, Zhang J, Wang G (2015) MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Funct Mater 25(9):1393–1403CrossRefGoogle Scholar
  42. 42.
    Wei Q, Chen T, Pan L, Niu L, Hu B, Li D, Li J, Sun Z (2015) MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim Acta 153:55–61CrossRefGoogle Scholar
  43. 43.
    Zhou F, Xin S, Liang HW, Song LT, Yu SH (2014) Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew Chem Int Ed Engl 53:11552–11556CrossRefGoogle Scholar
  44. 44.
    Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRefGoogle Scholar
  45. 45.
    Wang YX, Chou SL, Wexler D, Liu HK, Dou SX (2014) High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites. Chemistry 20:9607CrossRefGoogle Scholar
  46. 46.
    Kong D, Cheng C, Wang Y, Huang ZX, Lim YV, Liu B, Ge Q, Yang HY (2017) Fe3O4 quantum dots decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion batteries anode. J Mater Chem A 5:9122–9131CrossRefGoogle Scholar
  47. 47.
    Xu M, Yi F, Niu Y, Xie J, Hou J, Liu S, Hu W, Li Y, Li CM (2015) Solvent-mediated directionally self-assembling MoS2 nanosheets into a novel worm-like structure and its application in sodium batteries. J Mater Chem A 3:9932–9937CrossRefGoogle Scholar
  48. 48.
    Xu G, Liu P, Ren Y, Huang X, Peng Z, Tang Y, Wang H (2017) Three-dimensional MoO2 nanotextiles assembled from elongated nanowires as advanced anode for Li ion batteries. J Power Sources 361:1–8CrossRefGoogle Scholar
  49. 49.
    He H, Sun D, Zhang Q, Fu F, Tang Y, Guo J, Shao M, Wang H (2017) Iron doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl Mater Interfaces 9:6093–6103CrossRefGoogle Scholar
  50. 50.
    Sun D, Tang Y, Ye D, Yan J, Zhou H, Wang H (2017) Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries. ACS Appl Mater Interfaces 9:5254–5262CrossRefGoogle Scholar
  51. 51.
    He H, Gan Q, Wang H, Xu G-L, Zhang X, Huang D, Fu F, Tang Y, Amine K, Shao M (2018) Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44:217–227CrossRefGoogle Scholar
  52. 52.
    He H, Huang D, Pang W, Sun D, Wang Q, Tang Y, Ji X, Guo Z, Wang H (2018) Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv Mater 30:1801013CrossRefGoogle Scholar
  53. 53.
    Mortazavi M, Wang C, Deng J, Shenoy VB, Medhekar NV (2014) Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268:279–286CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.College of ScienceHunan Agricultural UniversityChangshaPeople’s Republic of China
  3. 3.College of Chemistry and Chemical EngineeringHunan University of Arts and ScienceChangdePeople’s Republic of China

Personalised recommendations