Advertisement

Journal of Materials Science

, Volume 54, Issue 3, pp 2458–2471 | Cite as

Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity

  • Chao Liu
  • Qixiang Xu
  • Qinfang Zhang
  • Yisong Zhu
  • Mingwei Ji
  • Zhiwei Tong
  • Wenhua Hou
  • Yu Zhang
  • Jianguang Xu
Energy materials
  • 269 Downloads

Abstract

Layered BiOBr/Ti3C2 (BTC) composites were synthesized by first preparing Ti3C2 nanosheets through the liquid etching of Ti3AlC2 powder and then hybridizing with BiOBr via a facile reflux process. The morphology, crystal structure, light-harvesting capacity, chemical nature of atoms and visible-light photocatalytic degradation activity were systematically studied and discussed. It was found that the introduction of Ti3C2 nanosheets improved UV–Vis light absorption region of BiOBr. A contact interface was formed between BiOBr nanoplate and Ti3C2 nanosheet due to the similar layered structures, which could accelerate the efficient separation and transfer of photoinduced electrons and holes. Thus, the obtained BTC composites showed the higher visible-light photocatalytic activity for the degradation of RhB than pure BiOBr. The generated active species were determined by the active species capture experiment and ESR spectra, showing that ·O2 and ·OH played a crucial role in the photocatalytic degradation of RhB. The corresponding photocatalytic mechanism was proposed. This work may provide a new insight into the construction of earth-abundant MXene-based photocatalysts with high performance and low cost.

Notes

Acknowledgements

The authors greatly appreciate the financial support of Natural Science Foundation of Jiangsu Province (No. BK20160434 and BK20160061), National Natural Science Foundation of China (No. 21773116, 11474246 and 21671167), China Postdoctoral Science Foundation (No. 2018M632283), Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, 20130091110010), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (No. PPZY2015A025) and Qing Lan Project.

Supplementary material

10853_2018_2990_MOESM1_ESM.docx (77.4 mb)
Supplementary material 1 (DOCX 79290 kb)

References

  1. 1.
    Zhu J, Li PZ, Guo W, Zhao Y, Zou R (2018) Titanium-based metal–organic frameworks for photocatalytic applications. Coord Chem Rev 359:80–101CrossRefGoogle Scholar
  2. 2.
    Zhu Y, Wang Y, Ling Q, Zhu Y (2017) Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl Catal B: Environ 200:222–229CrossRefGoogle Scholar
  3. 3.
    Liu C, Sun T, Wu L, Liang J, Huang Q, Chen J, Hou W (2015) N-doped Na2Ti6O13@TiO2 core–shell nanobelts with exposed 101 anatase facets and enhanced visible light photocatalytic performance. Appl Catal B Environ 170–171:17–24CrossRefGoogle Scholar
  4. 4.
    Muhulet A, Miculescu F, Voicu SI, Schütt F, Thakur VK, Mishra YK (2018) Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater Today Energy 9:154–186CrossRefGoogle Scholar
  5. 5.
    Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod 198:143–159CrossRefGoogle Scholar
  6. 6.
    Chen X, Liu L, Huang F (2015) Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev 44:1861–1885CrossRefGoogle Scholar
  7. 7.
    Zhang AY, Wang W, Chen JJ, Liu C, Li Q, Zhang X, Li WW, Si Y, Yu HQ (2018) Epitaxial facet junction on TiO2 single crystals for efficient photocatalytic water splitting. Energy Environ Sci 11:1444–1448CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Cui W, An W, Liu L, Liang Y, Zhu Y (2018) Combination of photoelectrocatalysis and adsorption for removal of bisphenol a over TiO2-graphene hydrogel with 3D network structure. Appl Catal B Environ 221:36–46CrossRefGoogle Scholar
  9. 9.
    Yang G, Yin H, Liu W, Yang Y, Zou Q, Luo L, Li H, Huo Y, Li H (2018) Synergistic Ag/TiO2-N photocatalytic system and its enhanced antibacterial activity towards Acinetobacter baumannii. Appl Catal B Environ 224:175–182CrossRefGoogle Scholar
  10. 10.
    Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci Nano 1:90–112CrossRefGoogle Scholar
  11. 11.
    Xu B, An Y, Liu Y, Qin X, Zhang X, Dai Y, Wang Z, Wang P, Whangboac MH, Huang B (2017) Enhancing the photocatalytic activity of BiOX (X = Cl, Br, and I), (BiO)2CO3 and Bi2O3 by modifying their surfaces with polar organic anions, 4-substituted thiophenolates. J Mater Chem A 5:14406–14414CrossRefGoogle Scholar
  12. 12.
    Wu X, Zhang K, Zhang G, Yin S (2017) Facile preparation of BiOX (X = Cl, Br, I) nanoparticles and up-conversion phosphors/BiOBr composites for efficient degradation of NO gas: Oxygen vacancy effect and near infrared light responsive mechanism. Chem Eng J 325:59–70CrossRefGoogle Scholar
  13. 13.
    Ganose AM, Cuff M, Butler KT, Walsh A, Scanlon DO (2016) Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem Mater 28:1980–1984CrossRefGoogle Scholar
  14. 14.
    Wang Y, Long Y, Yang Z, Zhang D (2018) A novel ion-exchange strategy for the fabrication of high strong BiOI/BiOBr heterostructure film coated metal wire mesh with tunable visible-light-driven photocatalytic reactivity. J Hazard Mater 351:11–19CrossRefGoogle Scholar
  15. 15.
    Wang H, Yong D, Chen S, Jiang S, Zhang X, Shao W, Zhang Q, Yan W, Pan B, Xie Y (2018) Oxygen vacancy mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J Am Chem Soc 140:1760–1766CrossRefGoogle Scholar
  16. 16.
    Kanagaraj T, Thiripuranthagan S (2017) Photocatalytic activities of novel SrTiO3–BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl Catal B Environ 207:218–232CrossRefGoogle Scholar
  17. 17.
    Yu H, Huang H, Xu K, Hao W, Guo Y, Wang S, Shen X, Pan S, Zhang Y (2017) Liquid-phase exfoliation into monolayered BiOBr nanosheets for photocatalytic oxidation and reduction. ACS Sustain Chem Eng 5:10499–10508CrossRefGoogle Scholar
  18. 18.
    Ye L, Jin X, Liu C, Ding C, Xie H, Chu KH, Wong PK (2016) Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl Catal B Environ 187:281–290CrossRefGoogle Scholar
  19. 19.
    Kong XY, Lee WPC, Ong WJ, Chai SP, Mohamed AR (2016) Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem 8:3074–3081CrossRefGoogle Scholar
  20. 20.
    Jiang GH, Wang RJ, Wang XH, Xi XG, Hu RB, Zhou Y, Wang S, Wang T, Chen WX (2012) Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating. ACS Appl Mater Interfaces 4:4440–4444CrossRefGoogle Scholar
  21. 21.
    Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005CrossRefGoogle Scholar
  22. 22.
    Naguib M, Gogotsi Y (2015) Synthesis of two-dimensional materials by selective extraction. Acc Chem Res 48:128–135CrossRefGoogle Scholar
  23. 23.
    Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A (2015) Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun 6:6544CrossRefGoogle Scholar
  24. 24.
    Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505CrossRefGoogle Scholar
  25. 25.
    Malik R (2018) Maxing out water desalination with MXenes. Joule 2:591–593CrossRefGoogle Scholar
  26. 26.
    Liu Z, Zhao ML, Lin H, Chen D, Ren CY, Zhang S, Peng W, Chen Y (2018) 2D magnetic titanium carbide (MXene) for cancer theranostics. J Mater Chem B 6:3541–3548CrossRefGoogle Scholar
  27. 27.
    Gao G, O’Mullane AP, Du A (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494–500CrossRefGoogle Scholar
  28. 28.
    Peng C, Yang X, Li Y, Yu H, Wang H, Peng F (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces 8:6051–6060CrossRefGoogle Scholar
  29. 29.
    Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907CrossRefGoogle Scholar
  30. 30.
    Sun HY, Kong X, Yi ZZ, Wang QB, Liu GY (2014) The difference of synthesis mechanism between Ti3SiC2 and Ti3AlC2 prepared from Ti/M/C (M = Al or Si) elemental powders by SHS technique. Ceram Int 40:12977–12981CrossRefGoogle Scholar
  31. 31.
    Ying G, He X, Li M, Li Y, Du S (2010) Synthesis and mechanical properties of nano-layered composite. J Alloys Compd 506:734–738CrossRefGoogle Scholar
  32. 32.
    Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516:78Google Scholar
  33. 33.
    Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264CrossRefGoogle Scholar
  34. 34.
    Xie X, Zhao MQ, Anasori B, Maleski K, Ren CE, Li J, Byles BW, Pomerantseva E, Wang G, Gogotsi Y (2016) Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26:513–523CrossRefGoogle Scholar
  35. 35.
    Ao Y, Wang K, Wang P, Wang C, Hou J (2016) Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Appl Catal B Environ 194:157–168CrossRefGoogle Scholar
  36. 36.
    Low J, Zhang L, Tong T, Shen B, Yu J (2018) TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal 361:255–266CrossRefGoogle Scholar
  37. 37.
    Guo X, Xie X, Choi S, Zhao Y, Liu H, Wang C, Chang S, Wang G (2017) Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J Mater Chem A 5:12445–12452CrossRefGoogle Scholar
  38. 38.
    Li R, Zhang L, Shi L, Wang P (2017) MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11:3752–3759CrossRefGoogle Scholar
  39. 39.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum Michel W (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253CrossRefGoogle Scholar
  40. 40.
    Liu C, Wu Q, Ji M, Zhu H, Hou H, Yang Q, Jiang C, Wang J, Tian L, Chen J, Hou W (2017) Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J Alloys Compd 723:1121–1131CrossRefGoogle Scholar
  41. 41.
    Y. Hou, A.B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis, Angew. Chem., Int. Ed., 52 (2013) 3621-3625CrossRefGoogle Scholar
  42. 42.
    Lunt RR, Sun K, Kroger M, Benziger JB, Forrest SR, Stephen R (2011) Ordered organic-organic multilayer growth. Phys Rev B 2011(83):064114CrossRefGoogle Scholar
  43. 43.
    Shao M, Shao Y, Chai J, Qu Y, Yang M, Wang Z, Yang M, Ip WF, Kwok CT, Shi X, Lu Z, Wang S, Wang X, Pan H (2017) Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J Mater Chem A 5:16748–16756CrossRefGoogle Scholar
  44. 44.
    Xiang Y, Ju P, Wang Y, Sun Y, Zhang D, Yu J (2016) Chemical etching preparation of the Bi2WO6/BiOI pn heterojunction with enhanced photocatalytic antifouling activity under visible light irradiation. Chem Eng J 288:264–275CrossRefGoogle Scholar
  45. 45.
    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of 2D titanium carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644CrossRefGoogle Scholar
  46. 46.
    Li G, Tan L, Zhang Y, Wu B, Li L (2017) Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir 33:9000–9006CrossRefGoogle Scholar
  47. 47.
    Xia QX, Shinde NM, Yun JM, Zhang T, Mane RS, Mathur S, Kim KH (2018) Bismuth Oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim Acta 271:351–360CrossRefGoogle Scholar
  48. 48.
    Gao L, Li X, Zhao J, Zhang X, Zhang X, Yu H (2017) In situ preparation of (BiO)2CO3/BiOBr sheet-on-sheet heterojunctions with enhanced visible light photocatalytic activity. J Phys Chem Solids 108:30–38CrossRefGoogle Scholar
  49. 49.
    Wang L, Zhang H, Wang B, Shen C, Zhang C, Hu Q, Zhou A, Liu B (2016) Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron Mater Lett 12:702–710CrossRefGoogle Scholar
  50. 50.
    Guanglong L, Changseok H, Miguel P, Duanwei Z, Shuijiao L, Vlassis L, Nikolaos I, Athanassios GK, Polycarpos F, Patrick SMD, Byrne JA, Dionysios DD (2012) Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles. Nanotechnology 23:294003CrossRefGoogle Scholar
  51. 51.
    Li L, Zhang X, Zhang Z, Zhang M, Cong L, Pan Y, Lin S (2016) A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors. J Mater Chem A 4:16635–16644CrossRefGoogle Scholar
  52. 52.
    Shinde NM, Xia QX, Yun JM, Singh S, Mane RS, Kim KH (2017) A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton Trans 46:6601–6611CrossRefGoogle Scholar
  53. 53.
    Song JM, Mao CJ, Niu HL, Shen YH, Zhang SY (2010) Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. CrystEngComm 12:3875–3881CrossRefGoogle Scholar
  54. 54.
    Liu C, Han R, Ji H, Sun T, Zhao J, Chen N, Chen J, Guo X, Hou W, Ding W (2016) S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity. Phys Chem Chem Phys 18:801–810CrossRefGoogle Scholar
  55. 55.
    Wang J, Tang L, Zeng G, Deng Y, Liu Y, Wang L, Zhou Y, Guo Z, Wang J, Zhang C (2017) Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl Catal B Environ 209:285–294CrossRefGoogle Scholar
  56. 56.
    Jiang D, Wang T, Xu Q, Li D, Meng S, Chen M (2017) Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl Catal B Environ 201:617–628CrossRefGoogle Scholar
  57. 57.
    Wan Z, Zhang G, Wu X, Yin S (2017) Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction. Appl Catal B Environ 207:17–26CrossRefGoogle Scholar
  58. 58.
    Liu C, Zhu H, Zhu Y, Dong P, Hou H, Xu Q, Chen X, Xi X, Hou W (2018) Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity. Appl Catal B Environ 228:54–63CrossRefGoogle Scholar
  59. 59.
    Yu C, Wu Z, Liu R, Dionysiou DD, Yang K, Wang C, Liu H (2017) Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl Catal B Environ 209:1–11CrossRefGoogle Scholar
  60. 60.
    Chen S, Yan R, Zhang X, Hu K, Li Z, Humayun M, Qu Y, Jing L (2017) Photogenerated electron modulation to dominantly induce efficient 2,4-dichlorophenol degradation on BiOBr nanoplates with different phosphate modification. Appl Catal B Environ 209:320–328CrossRefGoogle Scholar
  61. 61.
    Wang H, Peng R, Hood ZD, Naguib M, Adhikari SP, Wu Z (2016) Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9:1490–1497CrossRefGoogle Scholar
  62. 62.
    Lu Z, Zeng L, Song W, Qin Z, Zeng D, Xie C (2017) In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl Catal B Environ 202:489–499CrossRefGoogle Scholar
  63. 63.
    Wang J, Xia Y, Zhao H, Wang G, Xiang L, Xu J, Komarneni S (2017) Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl Catal B Environ 206:406–416CrossRefGoogle Scholar
  64. 64.
    Guo W, Qin Q, Geng L, Wang D, Guo Y, Yang Y (2016) Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt–BiOBr heterostructures. J Hazard Mater 308:374–385CrossRefGoogle Scholar
  65. 65.
    Tan G, She L, Liu T, Xu C, Ren H, Xia A (2017) Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity. Appl Catal B Environ 207:120–133CrossRefGoogle Scholar
  66. 66.
    Yang X, Qian F, Wang Y, Li M, Lu J, Li Y, Bao M (2017) Constructing a novel ternary composite (C16H33(CH3)3N)4W10O32/g-C3N4/rGO with enhanced visible-light-driven photocatalytic activity for degradation of dyes and phenol. Appl Catal B Environ 200:283–296CrossRefGoogle Scholar
  67. 67.
    Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. Nano Lett 3:353–358CrossRefGoogle Scholar
  68. 68.
    Li Y, Lv K, Ho W, Dong F, Wu X, Xia Y (2017) Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl Catal B Environ 202:611–619CrossRefGoogle Scholar
  69. 69.
    Dong X, Zhang W, Sun Y, Li J, Cen W, Cui Z, Huang H, Dong F (2018) Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres. J Catal 357:41–50CrossRefGoogle Scholar
  70. 70.
    Dong F, Xiong T, Sun Y, Huang H, Wu Z (2015) Synergistic integration of thermocatalysis and photocatalysis on black defective (BiO)2CO3 microspheres. J Mater Chem A 3:18466–18474CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYancheng Institute of TechnologyYanchengPeople’s Republic of China
  2. 2.Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople’s Republic of China
  3. 3.School of Chemical EngineeringHuaihai Institute of TechnologyLianyungangPeople’s Republic of China

Personalised recommendations