Journal of Materials Science

, Volume 54, Issue 3, pp 2658–2667 | Cite as

Microstructure and magnetic properties of SmCo7/Co nanocomposite powders prepared by mechanical alloying

  • Yilong MaEmail author
  • Xueguo YinEmail author
  • Bin Shao
  • Qiqi Yang
  • Qian Shen
  • Xiaoqing Zhou
  • Jianchun Sun
  • Dongling Guo
  • Kejian Li


SmCo7/Co nanocomposite powders were prepared by high-energy ball milling of SmCo5 modified by adding Co and annealed at different temperatures. The phase evolution, microstructure and magnetic properties of the nanocomposite powders were analyzed. The results have shown that the annealing temperature and the addition of Co significantly affected the phase structures and magnetic properties of the powders. The nanocomposite powders were completely composed of the SmCo7 phase and the face-centered cubic Co phase. When annealing the SmCo5 powder at 750 °C, the SmCo7 phase decomposed into Th2Zn17-type Sm2Co17 and CaCu5-type SmCo5 phases with an average grain size of 13.9 nm, and the maximum energy product and remanence had maximum values of 10.51 MGOe and 77.92 emu/g, respectively. However, adding 28 wt% Co effectively prevented growth of the grain (11.5 nm) and enhanced the decomposition temperature (850 °C), resulting in a higher maximum magnetic energy product, coercivity, and remanence. The SmCo7 lattice contracted as Co content increased.



This work was supported by National Natural Science Foundation of China (51201191), Chongqing Research Program of Basic Research and Frontier Technology (Nos. cstc2015jcyjA50004, cstc2016jcyjA0232), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1709202), Program for Innovation Teams in University of Chongqing (No. CXTDX201601032), Research Foundation of Chongqing University of Science and Technology (CK2017ZKZD003).


  1. 1.
    Gopalan R, Muraleedharan K, Sastry TSRK, Singh AK, Joshi V, Rao DVS (2001) Studies on structural transformation and magnetic properties in Sm2Co17 type alloys. J Mater Sci 36:4117–4123. CrossRefGoogle Scholar
  2. 2.
    Yan A, Bollero A, Gutfleisch O, Muller KH (2002) Microstructure and magnetization reversal in nanocomposite SmCo5/Sm2Co17 magnets. J Appl Phys 91:2192–2196CrossRefGoogle Scholar
  3. 3.
    Weller D, Moser A (1999) Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans Magn 35:4423–4439CrossRefGoogle Scholar
  4. 4.
    Matsushita T, Masuda J, Iwamoto T, Toshima N (2007) Fabrication of SmCox nanoparticles as a potential candidate of materials for super-high-density magnetic memory: use of gold as the third element. Chem Lett 36:1264–1265CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Zeng Q, Hadjipanayis GC (2005) Microstructure characterization of ball milled Sm(CoCuFeZr) 2:17 powders. J Appl Phys 97:1350Google Scholar
  6. 6.
    Hadjipanayis GC, Zhang Y, Tang W, Chui ST, Liu JF, Chen C, Kronmüller H (2001) High temperature 2:17 magnets: relationship of magnetic properties to microstructure and processing. Cheminform 32(29):3382–3387Google Scholar
  7. 7.
    Zhang Z, Song X, Xu W (2011) Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy. Acta Mater 59:1808–1817CrossRefGoogle Scholar
  8. 8.
    Sun JB, Han D, Cui CX, Yang W, Li L, Yang LG (2010) Effects of Hf and CNTs on structure and magnetic properties of TbCu7-type Sm-Co magnets. Intermetallics 18:599–605CrossRefGoogle Scholar
  9. 9.
    Jiang C, Venkatesan M, Gallagher K, Coey J (2001) Magnetic and structural properties of SmCo7−xTix, magnets. J Magn Magn Mater 236:49–55CrossRefGoogle Scholar
  10. 10.
    Feng DY, Zhao LZ, Liu ZW, Zhang GQ (2016) An investigation on nanocrystalline TbCu7-Type SmCo6.4Si0.3Zr0.3C0.2 alloys with Sm partially substituted by various light and heavy rare earth elements. IEEE Trans Magn 52(12):1–6CrossRefGoogle Scholar
  11. 11.
    Hsieh CC, Shih CW, Liu Z, Chang WC (2012) Magnetic properties and crystal structure of melt-spun Sm (Co, M)7 (M = Al and Si) ribbons. J Appl Phys 111:1085CrossRefGoogle Scholar
  12. 12.
    Li YY, Shen J, Chen Y (2010) Atomistic simulation for disordered TbCu7-type compounds SmCo7, and Sm(Co,T)7, (T = Ti, Ga, Si, Cu, Hf, Zr). Solid State Sci 12:33–38CrossRefGoogle Scholar
  13. 13.
    Luo J, Liang JK, Guo YQ, Liu QL, Yang LT, Liu FS, Rao GH (2004) Crystal structure and magnetic properties of SmCo5.85Si0.90 compound. Appl Phys Lett 84:3094–3096CrossRefGoogle Scholar
  14. 14.
    Guo Y, Li W, Feng W, Luo J, Liang JK, He QJ, Yu XJ (2005) Structural stability and magnetic properties of SmCo7−xGax. Appl Phys Lett 86:1514Google Scholar
  15. 15.
    Hua G, Song X, Liu D, Wang H, Liu X (2016) Effects of Hf on phase structure and magnetic performance of nanocrystalline SmCo7-type alloy. J Mater Sci 51:3390–3397. CrossRefGoogle Scholar
  16. 16.
    Makridis S, Tang W (2012) Structural and magnetic properties of Sm(Co0.7Fe0.1Ni0.12Zr0.04B0.04)7.5 melt spun isotropic and anisotropic ribbons. Rare Earths 30:691–695CrossRefGoogle Scholar
  17. 17.
    Seyring M, Song X, Zhang Z, Rettenmayr M (2015) Concurrent ordering and phase transformation in SmCo7 nanograins. Nanoscale 7:12126–12132CrossRefGoogle Scholar
  18. 18.
    Sun JB, Han D, Cui CX, Yang W, Li L, Yang F (2009) Effects of quenching speeds on microstructure and magnetic properties of novel SmCo6.9Hf0.1(CNTs)0.05, melt-spun ribbons. Acta Mater 57:2845–2850CrossRefGoogle Scholar
  19. 19.
    Li LY, Yi JH, Peng YD, Huang BY (2005) Recent development in preparation of nanocrystalline rare-earth permanent magnetic materials. Powder Metall Ind 15:35–40Google Scholar
  20. 20.
    Liu Z, Chen RJ, Lee D, Yan AR (2011) Investigation of structure and magnetization reversal in mechanically alloyed SmCo6.8 Zr0.2 magnets. J Alloys Compd 509(9):3967–3971CrossRefGoogle Scholar
  21. 21.
    Venkatesan M, Jiang C, Coey J (2002) 1:7-type magnets produced by mechanical milling. J Magn Magn Mater 242(12):1350–1352CrossRefGoogle Scholar
  22. 22.
    Jiang C, Venkatesan M, Gallagher K, Coey J (2001) Magnetic and structural properties of SmCo7−xTix magnets. J Magn Magn Mater 236(1):49–55CrossRefGoogle Scholar
  23. 23.
    Morita Y, Umeda T, Kimura Y (1987) Phase transformation at high temperature and coercivity of Sm(Co, Cu, Fe, Zr)7–9 magnet alloys. IEEE Trans Magn 23:2702–2704CrossRefGoogle Scholar
  24. 24.
    Song XY, Lu N, Seyring M, Rettenmayr M, Xu WW, Zhang ZX, Zhang JX (2009) Abnormal crystal structure stability of nanocrystalline Sm2Co17 permanent magnet. Appl Phys Lett 94(2):1347Google Scholar
  25. 25.
    Guo J, Chen N, Shen J (2006) Atomistic simulation for disordered rare-earth compounds SmCo7, and Sm(Co,Ti)7. J Alloys Compd 425:14–23CrossRefGoogle Scholar
  26. 26.
    Pal SK, Schultz L, Gutfleisch O (2013) Effect of milling parameters on SmCo5 nanoflakes prepared by surfactant-assisted high energy ball milling. J Appl Phys 113:821Google Scholar
  27. 27.
    Huang JY, Wu K, Ye HQ, Liu K (1995) Allotropic transformation of cobalt induced by ball milling. Appl Phys Lett 66:308–310CrossRefGoogle Scholar
  28. 28.
    Wen C, Huang B, Chen Z, Rong Y (2006) Martensite and its reverse transformation in nanocrystalline bulk Co. Mater Sci Eng A 438–440:420–426CrossRefGoogle Scholar
  29. 29.
    Luo J, Liang JK, Guo YQ, Liu QL, Liu FS, Zhang Y, Yang LT, Rao GH (2005) Effects of the doping element on crystal structure and magnetic properties of Sm(Co,M)7, compounds (M = Si, Cu, Ti, Zr, and Hf). Intermetallics 13:710–716CrossRefGoogle Scholar
  30. 30.
    Buschow KHJ, Goot ASVD (1971) Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds. Acta Crystallogr A 27:1085–1088CrossRefGoogle Scholar
  31. 31.
    Guo YQ, Li W, Luo J, Feng WC, Liang JK (2006) Structure and magnetic characteristics of novel SmCo-based hard magnetic alloys. J Magn Magn Mater 303:e367–e370CrossRefGoogle Scholar
  32. 32.
    Zhang Z, Song X, Li D, Liu X (2013) Phase stability and phase transformation of nanocrystalline SmCo7 alloy and their effects on the magnetic performance. Rare Met Mater Eng 42(3):565–568Google Scholar
  33. 33.
    Fischer R, Schrefl T, Kronmüller H, Fidler J (1996) Grain-size dependence of remanence and coercive field of isotropic nanocrystalline composite permanent magnets. J Magn Magn Mater 153:35–49CrossRefGoogle Scholar
  34. 34.
    Hadjipanayis GC (1999) Nanophase hard magnets. J Magn Magn Mater 200:373–391CrossRefGoogle Scholar
  35. 35.
    Li BB, Ma YL, Shao B, Li CH, Chen DM, Sun JC, Zheng Q, Yin XG (2018) Preparation and magnetic properties of anisotropic MnBi powders. Physica B 530:322–326CrossRefGoogle Scholar
  36. 36.
    Gutfleisch O, Bollero A, Handstein A, Hinz D, Kirchner A, Yan A, Muller KH, Schultz L (2002) Nanocrystalline high performance permanent magnets. J Magn Magn Mater 242(4):1277–1283CrossRefGoogle Scholar
  37. 37.
    Klett A, Freudenstein R, Plass MF, Kulisch W (2000) Correlation between stress values of cubic boron nitride thin films and intrinsic film properties or the infrared peak position. Surf Coat Technol 125:190–195CrossRefGoogle Scholar
  38. 38.
    Toozandehjani M, Matori KA, Ostovan F, Abdul SA, Mamat MS (2017) Effect of milling time on the microstructure, physical and mechanical properties of Al–Al2O3 nanocomposite synthesized by ball milling and powder metallurgy. Materials 10:1232CrossRefGoogle Scholar
  39. 39.
    Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Nanocrystalline metals prepared by high-energy ball milling. Metall Trans A 21(9):2333CrossRefGoogle Scholar
  40. 40.
    Miao WF, Li GS, Li SL, Wang JT (1992) The role of internal stress in the amorphization process during mechanical alloying. Acta Physica Sin 41(6):924–928Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yilong Ma
    • 1
    Email author
  • Xueguo Yin
    • 1
    Email author
  • Bin Shao
    • 1
  • Qiqi Yang
    • 1
  • Qian Shen
    • 2
  • Xiaoqing Zhou
    • 3
  • Jianchun Sun
    • 1
  • Dongling Guo
    • 1
  • Kejian Li
    • 1
  1. 1.College of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.College of Material Science and EngineeringChongqing University of TechnologyChongqingChina
  3. 3.Zhejiang Xinsheng Magnetics Technology Co. LtdZhejiangChina

Personalised recommendations