Journal of Materials Science

, Volume 54, Issue 3, pp 2278–2288 | Cite as

Electronic, photocatalytic, and optical properties of two-dimensional boron pnictides

  • Huabing ShuEmail author
  • Jiyuan Guo
  • Xianghong Niu


By employing first-principles calculations, we investigate the stabilities, quasi-particle band structures, and photocatalytic and optical properties of monolayer boron pnictides. Calculations indicate that monolayer boron pnictides have highly thermal stabilities verified by molecular dynamics, appreciable direct bandgaps, and good optical absorptions in the visible and near-infrared ranges. In addition, the relatively small exciton binding energies are also observed in the three systems, facilitating the separation of photogenerated electrons and holes. More interestingly, monolayer boron phosphide satisfies the criteria of photocatalyst for water splitting, and its photocatalytic performance can be further enhanced by applying biaxial tensile strain. Our researches provide valuable insight for finding monolayer boron pnictides applied in optoelectronics and photocatalytic water splitting.



The work was supported by the Research Fund (1052931610) of Jiangsu University of Science and Technology.

Supplementary material

10853_2018_2987_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4911 kb)


  1. 1.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  2. 2.
    Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRefGoogle Scholar
  3. 3.
    Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377CrossRefGoogle Scholar
  4. 4.
    Liu H, Du Y, Deng Y, Ye PD (2015) Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev 44:2732–2743CrossRefGoogle Scholar
  5. 5.
    Zhang S, Guo S, Chen Z et al (2018) Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev 47:982–1021CrossRefGoogle Scholar
  6. 6.
    Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRefGoogle Scholar
  7. 7.
    Castro Neto AH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  8. 8.
    Kotov VN, Uchoa B, Pereira VM et al (2012) Electron–electron interactions in graphene: current Status and Perspectives. Rev Mod Phys 84:1067–1125CrossRefGoogle Scholar
  9. 9.
    Bepete G, Anglaret E, Ortolani L et al (2016) Surfactant-free single-layer graphene in water. Nat Chem 9:347–352CrossRefGoogle Scholar
  10. 10.
    Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  11. 11.
    Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275CrossRefGoogle Scholar
  12. 12.
    Jariwala D, Sangwan VK, Lauhon LJ et al (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8:1102–1120CrossRefGoogle Scholar
  13. 13.
    Onga M, Zhang Y, Ideue T, Iwasa Y (2017) Exciton Hall effect in monolayer MoS2. Nat Mater 16:1193–1197CrossRefGoogle Scholar
  14. 14.
    Liu H, Neal AT, Zhu Z et al (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033–4041CrossRefGoogle Scholar
  15. 15.
    Xia F, Wang H, Jia Y (2014) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5:4458-1–4458-6Google Scholar
  16. 16.
    Wang X, Jones AM, Seyler KL et al (2015) Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol 10:517–521CrossRefGoogle Scholar
  17. 17.
    Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Env Sci 9:709–728CrossRefGoogle Scholar
  18. 18.
    Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRefGoogle Scholar
  19. 19.
    Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602-1–016602-4Google Scholar
  20. 20.
    Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805-1–136805-4CrossRefGoogle Scholar
  21. 21.
    Lu J, Carvalho A, Chan XK et al (2015) Atomic healing of defects in transition metal dichalcogenides. Nano Lett 15:3524–3532CrossRefGoogle Scholar
  22. 22.
    Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453CrossRefGoogle Scholar
  23. 23.
    Castellanos-Gomez A, Vicarelli L, Prada E et al (2014) Isolation and characterization of few-layer black phosphorus. 2D Mater 1:025001-1–025001-19Google Scholar
  24. 24.
    Island JO, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2015) Environmental instability of few-layer black phosphorus. 2D Mater 2:011002-1–011002-6CrossRefGoogle Scholar
  25. 25.
    Chen S, Gong XG, Walsh A, Wei S-H (2009) Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett 94:041903-1–041903-3Google Scholar
  26. 26.
    Chen S, Gong XG, Walsh A, Wei S-H (2009) Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and III-VI compounds. Phys Rev B 79:165211-1–165211-10Google Scholar
  27. 27.
    Zhuang HL, Hennig RG (2012) Electronic structures of single-layer boron pnictides. Appl Phys Lett 101:153109-1–153109-4Google Scholar
  28. 28.
    Dean CR, Young AF, Meric I et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726CrossRefGoogle Scholar
  29. 29.
    Lee KH, Shin H-J, Lee J et al (2012) Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett 12:714–718CrossRefGoogle Scholar
  30. 30.
    Liu Z, Gong Y, Zhou W et al (2013) Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat Commun 4:2541-1–2541-8Google Scholar
  31. 31.
    Li X, Yin J, Zhou J, Guo W (2014) Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology 25:105701-1–105701-5CrossRefGoogle Scholar
  32. 32.
    Park J-H, Park JC, Yun SJ et al (2014) Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 8:8520–8528CrossRefGoogle Scholar
  33. 33.
    Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404–409CrossRefGoogle Scholar
  34. 34.
    Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317:932–934CrossRefGoogle Scholar
  35. 35.
    Şhin H, Cahangirov S, Topsakal M et al (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80:155453-1–155453-12CrossRefGoogle Scholar
  36. 36.
    Xie M, Zhang S, Cai B et al (2016) Two-dimensional BX (X = P, As, Sb) semiconductors with mobilities approaching graphene. Nanoscale 8:13407–13413CrossRefGoogle Scholar
  37. 37.
    Zeng B, Li M, Zhang X et al (2016) First-principles prediction of the electronic structure and carrier mobility in hexagonal boron phosphide sheet and nanoribbons. J Phys Chem C 120:25037–25042CrossRefGoogle Scholar
  38. 38.
    Çakır D, Kecik D, Sahin H et al (2015) Realization of a p-n junction in a single layer boron-phosphide. Phys Chem Chem Phys 17:13013–13020CrossRefGoogle Scholar
  39. 39.
    Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21:395502-1–395502-19Google Scholar
  40. 40.
    Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710CrossRefGoogle Scholar
  41. 41.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  42. 42.
    Artacho E, Anglada E, Diéguez O et al (2008) The SIESTA method; developments and applicability. J Phys: Condens Matter 20:064208-1–064208-6Google Scholar
  43. 43.
    Marini A, Hogan C, Grüning M, Varsano D (2009) Yambo: an ab initio tool for excited state calculations. Comput Phys Commun 180:1392–1403CrossRefGoogle Scholar
  44. 44.
    Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390–5413CrossRefGoogle Scholar
  45. 45.
    Li Y, Liao Y, Chen Z (2014) Be2C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. Angew Chem Int Ed 53:7248–7252CrossRefGoogle Scholar
  46. 46.
    Molina-Sánchez A, Wirtz L (2011) Phonons in single-layer and few-layer MoS2 and WS2. Phys Rev B 84:115413-1–115413-8CrossRefGoogle Scholar
  47. 47.
    Cahangirov S, Topsakal M, Aktürk E et al (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804-1–236804-4CrossRefGoogle Scholar
  48. 48.
    Harrison WA (1989) Electronic structure and the properties of solids: the physics of the chemical bond. Dover Publications, New YorkGoogle Scholar
  49. 49.
    Qiao J, Kong X, Hu Z-X et al (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:4475-1–4475-7CrossRefGoogle Scholar
  50. 50.
    Li X, Zhao J, Yang J (2013) Semihydrogenated BN sheet: a promising visible-light driven photocatalyst for water splitting. Sci Rep 3:1858-1–1858-5Google Scholar
  51. 51.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  52. 52.
    Chakrapani V, Angus JC, Anderson AB et al (2007) Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318:1424–1430CrossRefGoogle Scholar
  53. 53.
    Friedrich C, Müller MC, Blügel S (2011) Band convergence and linearization error correction of all-electron GW calculations: the extreme case of zinc oxide. Phys Rev B 83:081101-1–081101-4CrossRefGoogle Scholar
  54. 54.
    Nabok D, Gulans A, Draxl C (2016) Accurate all-electron G0W0 quasiparticle energies employing the full-potential augmented plane-wave method. Phys Rev B 94:035118-1–035118-9CrossRefGoogle Scholar
  55. 55.
    Feng J, Qian X, Huang C-W, Li J (2012) Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics 6:866–872CrossRefGoogle Scholar
  56. 56.
    Manzeli S, Allain A, Ghadimi A, Kis A (2015) Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett 15:5330–5335CrossRefGoogle Scholar
  57. 57.
    Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89:235319-1–235319-6Google Scholar
  58. 58.
    Cheiwchanchamnangij T, Lambrecht WRL (2012) Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B 85:205302-1–205302-4CrossRefGoogle Scholar
  59. 59.
    Choi J-H, Cui P, Lan H, Zhang Z (2015) Linear scaling of the exciton binding energy versus the band gap of two-dimensional materials. Phys Rev Lett 115:066403-1–066403-5Google Scholar
  60. 60.
    The AM1.5G spectrum was taken from the NREL website:

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.School of ScienceNanjing University of Posts and TelecommunicationNanjingChina

Personalised recommendations