Journal of Materials Science

, Volume 54, Issue 3, pp 2740–2753 | Cite as

Multifunctional polystyrene nanofiber membrane with bounded polyethyleneimine and NO photodonor: dark- and light-induced antibacterial effect and enhanced CO2 adsorption

  • Jiří Dolanský
  • Jan Demel
  • Jiří MosingerEmail author


Herein, we report the preparation, characterization and antibacterial evaluation of electrospun polystyrene nanofiber membrane with covalently bonded polyethyleneimine and NO photodonor. The nanofiber membranes were prepared by electrospinning, followed by two-step functionalization of the nanofiber surface by chlorosulfonic acid and then by polyethyleneimine (PEI) with or without NO photodonor. Nanofiber membranes with PEI and NO photodonor are characterized by a high hydrophilicity, photogeneration of NO radicals and CO2 retention. Due to the photogeneration of highly antibacterial NO radicals, the nanofibers exhibited an efficient antibacterial effect toward Gram-negative Escherichia coli when activated by visible light. The functionalization of the nanofiber membranes by PEI was responsible for the antibacterial character of the surface of the nanofiber membranes even in the dark, showing low bacteria adherence and the retention of CO2. The combination of the properties of the membranes including also protecting against pathogens passing through the nanofiber membrane suggests that these nanomaterials have a promising broad range of applications in medicine.



This work was supported by the Czech Science Foundation (16-15020S) and by OP VVV “Excellent Research Teams,” Project No. CZ.02.1.01/0.0/0.0/15_003/0000417—CUCAM. The authors thank Dr. Lukáš Plíštil for preparation of the nanofiber membranes via electrospinning.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10853_2018_2982_MOESM1_ESM.pdf (429 kb)
Chemical tests and amperometric detection of NO, crystal violet assay, average number of CFUs after filtration of bacteria through functionalized nanofiber membranes and average number of CFUs in spatial photo-antibacterial test


  1. 1.
    Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304CrossRefGoogle Scholar
  2. 2.
    Arciola CR, Campoccia D, Speziale P et al (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33:5967–5982CrossRefGoogle Scholar
  3. 3.
    Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281CrossRefGoogle Scholar
  4. 4.
    Sortino S (2010) Light-controlled nitric oxide delivering molecular assemblies. Chem Soc Rev 39:2903CrossRefGoogle Scholar
  5. 5.
    Sortino S (2012) Photoactivated nanomaterials for biomedical release applications. J Mater Chem 22:301–318CrossRefGoogle Scholar
  6. 6.
    Barraud N, Kelso MJ, Rice SA, Kjelleberg S (2015) Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des 21:31–42CrossRefGoogle Scholar
  7. 7.
    Bishop CM (2012) Development of a nitric oxide measurement method in tissue media. Fort Collins, Colorado, Master Thesis. Colorado State UniversityGoogle Scholar
  8. 8.
    Wang PG, Xian M, Tang X et al (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134CrossRefGoogle Scholar
  9. 9.
    Feelisch M, Stamler JS (1996) Methods in nitric oxide research. Wiley, New YorkGoogle Scholar
  10. 10.
    Rose MJ, Mascharak PK (2008) Photoactive ruthenium nitrosyls: effects of light and potential application as NO donors. Coord Chem Rev 252:2093–2114CrossRefGoogle Scholar
  11. 11.
    Ford PC (2013) Photochemical delivery of nitric oxide. Nitric Oxide Biol Chem 34:56–64CrossRefGoogle Scholar
  12. 12.
    Seabra AB, Durán N (2010) Nitric oxide-releasing vehicles for biomedical applications. J Mater Chem 20:1624–1637CrossRefGoogle Scholar
  13. 13.
    Mosinger J, Jirsák O, Kubát P et al (2007) Bactericidal nanofabrics based on photoproduction of singlet oxygen. J Mater Chem 17:164–166CrossRefGoogle Scholar
  14. 14.
    Mosinger J, Lang K, Kubát P et al (2009) Photofunctional polyurethane nanofabrics doped by zinc tetraphenylporphyrin and zinc phthalocyanine photosensitizers. J Fluoresc 19:705–713CrossRefGoogle Scholar
  15. 15.
    Jesenská S, Plíštil L, Kubát P et al (2011) Antibacterial nanofiber materials activated by light. J Biomed Mater Res Part A 99A:676–683CrossRefGoogle Scholar
  16. 16.
    Arenbergerova M, Arenberger P, Bednar M et al (2012) Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol 21:619–624CrossRefGoogle Scholar
  17. 17.
    Lhotáková Y, Plíštil L, Morávková A et al (2012) Virucidal nanofiber textiles based on photosensitized production of singlet oxygen. PLoS ONE 7:e49226CrossRefGoogle Scholar
  18. 18.
    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–228CrossRefGoogle Scholar
  19. 19.
    Liu X, Lin T, Fang J, Wang X et al (2010) In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. J Biomed Mater Res Part A 94(2):499–508Google Scholar
  20. 20.
    Henke P, Lang K, Kubát P et al (2013) Polystyrene nanofiber materials modified with an externally bound porphyrin photosensitizer. ACS Appl Mater Interfaces 5:3776–3783CrossRefGoogle Scholar
  21. 21.
    Henke P, Kozak H, Artemenko A et al (2014) Superhydrophilic polystyrene nanofiber materials generating O2(1Δg): postprocessing surface modifications toward efficient antibacterial effect. ACS Appl Mater Interfaces 6:13007–13014CrossRefGoogle Scholar
  22. 22.
    Yang Y-F, Hu H-Q, Xu Z-K et al (2011) Membrane surface with antibacterial property by grafting polycation. J Membr Sci 376:132–141CrossRefGoogle Scholar
  23. 23.
    Xu J-W, Wang Y, Yang Y-F et al (2015) Effects of quaternization on the morphological stability and antibacterial activity of electrospun poly(DMAEMA-co-AMA) nanofibers. Colloids Surf B Biointerfaces 133:148–155CrossRefGoogle Scholar
  24. 24.
    Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593CrossRefGoogle Scholar
  25. 25.
    Beyerle A, Irmler M, Beckers J et al (2010) Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm 7:727–737CrossRefGoogle Scholar
  26. 26.
    Bayer E, Spivakov BY, Geckeler K (1985) Poly(ethyleneimine) as complexing agent for separation of metal ions using membrane filtration. Polym Bull 13:307–311Google Scholar
  27. 27.
    Bolto BA (1995) Soluble polymers in water purification. Prog Polym Sci 20:987–1041CrossRefGoogle Scholar
  28. 28.
    Dindi A, Quang DV, Nashef E, Zahra MRMA (2017) Effect of PEI impregnation on the CO2 capture performance of activated fly ash. Energy Procedia 114:2243–2251CrossRefGoogle Scholar
  29. 29.
    Yin F, Zhuang L, Luo X, Chen S (2018) Simple synthesis of nitrogen-rich polymer network and its further amination with PEI for CO2 adsorption. Appl Surf Sci 434:514–521CrossRefGoogle Scholar
  30. 30.
    Ko YG, Shin SS, Choi US (2011) Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents. J Colloid Interface Sci 361:594–602CrossRefGoogle Scholar
  31. 31.
    Xu X, Song C, Scaroni AW et al (2002) Novel polyethylenimine-modified mesoporous molecular sieve of mcm-41 type as high-capacity adsorbent for Co2 capture. Energy Fuels 16(6):1463–1469CrossRefGoogle Scholar
  32. 32.
    Chen C, Yang S-T, Ahn W-S, Ryoo R (2009) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem Commun 24:3627–3629CrossRefGoogle Scholar
  33. 33.
    Yadav S, Mahato M, Jha D et al (2017) Enhanced antibacterial activity of tetramethylguanidinium-conjugated linear polyethylenimine polymers. Int J Polym Mater Polym Biomater 67:1–7Google Scholar
  34. 34.
    Li W-P, Su C-H, Wang S-J et al (2017) CO2 delivery to accelerate incisional wound healing following single irradiation of near-infrared lamp on the coordinated colloids. ACS Nano 11:5826–5835CrossRefGoogle Scholar
  35. 35.
    Kosaka H (1999) Nitric oxide and hemoglobin interactions in the vasculature. Biochim Biophys Acta Bioenerg 1411:370–377CrossRefGoogle Scholar
  36. 36.
    Brandi C, D’Aniello C, Grimaldi L et al (2001) Carbon dioxide therapy in the treatment of localized adiposities: clinical study and histopathological correlations. Aesthet Plast Surg 25:170–174CrossRefGoogle Scholar
  37. 37.
    Broughton G, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg 117:1e-S–32e-SCrossRefGoogle Scholar
  38. 38.
    Brandi C, Grimaldi L, Nisi G et al (2010) The role of carbon dioxide therapy in the treatment of chronic wounds. In Vivo 24:223–226Google Scholar
  39. 39.
    Callari FL, Sortino S (2008) Amplified nitric oxide photorelease in DNA proximity. Chem Commun 0:1971–1973CrossRefGoogle Scholar
  40. 40.
    Zhang W, Liu H, Sun C et al (2014) Capturing CO2 from ambient air using a polyethyleneimine–silica adsorbent in fluidized beds. Chem Eng Sci 116:306–316CrossRefGoogle Scholar
  41. 41.
    Choi W, Min K, Kim C et al (2016) Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat Commun 7:12640CrossRefGoogle Scholar
  42. 42.
    Kang M-Y, Jeong H-W, Kim J et al (2010) Removal of biofilms using carbon dioxide aerosols. J Aerosol Sci 41:1044–1051CrossRefGoogle Scholar
  43. 43.
    Zancopé BR, Dainezi VB, Nobre-dos-Santos M et al (2016) Effects of CO2 laser irradiation on matrix-rich biofilm development formation–an in vitro study. PeerJ 4:e2458CrossRefGoogle Scholar
  44. 44.
    Jirsák O, Sanetrník F, Chaloupek J et al (2005) International Patent WO 2005024101 A1Google Scholar
  45. 45.
    Forward KM, Rutledge GC (2011) Free surface electrospinning from a wire electrode. Chem Eng J 183:492–503CrossRefGoogle Scholar
  46. 46.
    Dolanský J, Henke P, Kubát P et al (2015) Polystyrene nanofiber materials for visible-light-driven dual antibacterial action via simultaneous photogeneration of NO and O2(1δg). ACS Appl Mater Interfaces 7:22980–22989CrossRefGoogle Scholar
  47. 47.
    Miyoshi Y, Oyama T, Koga R, Hamase K (2013) Amino acid and bioamine separations. In: Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D (eds) Liquid chromatography. Elsevier, pp 131–147Google Scholar
  48. 48.
    Atorngitjawat P, Runt J (2007) Dynamics of sulfonated polystyrene ionomers using broadband dielectric spectroscopy. Macromolecules 40:991–996CrossRefGoogle Scholar
  49. 49.
    Coneski PN, Schoenfisch MH (2012) Nitric oxide release: part III. Measurement and reporting. Chem Soc Rev 41:3753–3758CrossRefGoogle Scholar
  50. 50.
    Nguyen EB, Zilla P, Bezuidenhout D (2014) Nitric oxide release from polydimethylsiloxane-based polyurethanes. J Appl Biomater Funct Mater 12:172–182Google Scholar
  51. 51.
    Yoo J-W, Nurhasni H, Cao J et al (2015) Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, in vivo wound healing activity. Int J Nanomedicine 10:3065–3080CrossRefGoogle Scholar
  52. 52.
    Helander IM, Latva-Kala K, Lounatmaa K (1998) Permeabilizing action of polyethyleneimine on Salmonella typhimurium involves disruption of the outer membrane and interactions with lipopolysaccharide. Microbiology 144:385–390CrossRefGoogle Scholar
  53. 53.
    Azevedo MM, Ramalho P, Silva AP et al (2014) Polyethyleneimine and polyethyleneimine-based nanoparticles: novel bacterial and yeast biofilm inhibitors. J Med Microbiol 63:1167–1173CrossRefGoogle Scholar
  54. 54.
    Chen Z, Deng S, Wei H et al (2013) Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. ACS Appl Mater Interfaces 5:6937–6945CrossRefGoogle Scholar
  55. 55.
    Henke P, Kirakci K, Kubát P et al (2016) Antibacterial, antiviral, and oxygen-sensing nanoparticles prepared from electrospun materials. ACS Appl Mater Interfaces 8:25127–25136CrossRefGoogle Scholar
  56. 56.
    Feoktistova M, Geserick P, Leverkus M (2016) Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. CrossRefGoogle Scholar
  57. 57.
    Jakubovics NS, Shields RC, Rajarajan N, Burgess JG (2013) Life after death: the critical role of extracellular DNA in microbial biofilms. Lett Appl Microbiol 57:467–475CrossRefGoogle Scholar
  58. 58.
    Most D, Efron DT, Shi HP et al (2002) Characterization of incisional wound healing in inducible nitric oxide synthase knockout mice. Surgery 132:866–876CrossRefGoogle Scholar
  59. 59.
    Witte MB, Barbul A (2002) Role of nitric oxide in wound repair. Am J Surg 183:406–412CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ScienceCharles UniversityPrague 2Czech Republic
  2. 2.Institute of Inorganic Chemistry, v.v.iCzech Academy of SciencesŘežCzech Republic

Personalised recommendations