Advertisement

Journal of Materials Science

, Volume 54, Issue 3, pp 2446–2457 | Cite as

High-performance nitrogen-doped hierarchical porous carbon derived from cauliflower for advanced supercapacitors

  • Bao Men
  • Pengkai Guo
  • Yanzhi Sun
  • Yang Tang
  • Yongmei Chen
  • Junqing Pan
  • Pingyu Wan
Energy materials
  • 184 Downloads

Abstract

Nitrogen-doped hierarchical porous carbon is successfully synthesized from cauliflower with unique structure by a simple pyrolysis process, including a pre-carbonization step of cauliflower and a KOH-activated step of carbonization product. According to this pyrolysis strategy, the pre-carbonization product at 450 °C basically keeps the original structure of cauliflower, beneficial to the deep and uniform activation at 700 °C and the formation of 3D interconnected network framework. The as-prepared sample (NPCC2-700) shows desirable specific surface area of 2604.7 m2 g−1, large pore volume, and abundant micropores and mesopores. Combined with the high content of active heteroatoms, NPCC2-700 exhibits high specific capacitance of 311 F g−1 at 1 A g−1 and 250 F g−1 at 50 A g−1 in 6M KOH electrolyte. Meanwhile, the excellent rate performance and long-term cycling stability can be achieved for NPCC2-700. Furthermore, the energy density of the assembled symmetric supercapacitor based on NPCC2-700 electrodes is as high as 20.5 Wh kg−1 at a power density of 448.8 W kg−1 in 1 M Na2SO4 solution.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21706004, 21676022 & 21506010). The authors thank Prof. Xiaoguang Liu for important discussions and modification of the manuscript.

Supplementary material

10853_2018_2979_MOESM1_ESM.doc (5.2 mb)
Supplementary material 1 (DOC 5364 kb)

References

  1. 1.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730CrossRefGoogle Scholar
  2. 2.
    Winter M, Brodd R, Batteries What Are (2004) Fuel cells, and supercapacitors? Chem Rev 101:4245–4270CrossRefGoogle Scholar
  3. 3.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRefGoogle Scholar
  4. 4.
    Parlett C, Wilson K, Lee A (2013) Hierarchical porous materials: catalytic applications. Chem Soc Rev 42:3876–3893CrossRefGoogle Scholar
  5. 5.
    Wang D, Fang G, Xue T, Ma J, Geng G (2016) A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications. J Power Sources 307:401–409CrossRefGoogle Scholar
  6. 6.
    Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175CrossRefGoogle Scholar
  7. 7.
    Frackowiak E, Abbas Q, Béguin F (2013) Carbon/carbon supercapacitors. J Energy Chem 22:226–240CrossRefGoogle Scholar
  8. 8.
    Conway B (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, New YorkGoogle Scholar
  9. 9.
    Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903CrossRefGoogle Scholar
  10. 10.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251CrossRefGoogle Scholar
  11. 11.
    Ning X, Zhong W, Li S, Wang Y, Yang W (2014) High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A 2:8859–8867CrossRefGoogle Scholar
  12. 12.
    Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497–2504CrossRefGoogle Scholar
  13. 13.
    Li Y, Li Z, Shen P (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 17:2474–2480CrossRefGoogle Scholar
  14. 14.
    Chen C, Zhang Q, Huang C, Zhao X, Zhang B, Kong Q, Wang M, Yang Y, Cai R, Su D (2012) Macroporous ‘Bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors. Chem Commun 48:7149–7151CrossRefGoogle Scholar
  15. 15.
    Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X (2016) Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv Mater 28:1981–1987CrossRefGoogle Scholar
  16. 16.
    Béguin F, Szostak K, Lota G, Frackowiak E (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17:2380–2384CrossRefGoogle Scholar
  17. 17.
    Li W, Gao F, Wang X, Zhang N, Ma M (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem Int Ed 128:9342–9347CrossRefGoogle Scholar
  18. 18.
    Jing L, Tan H, Amal R, Ng Y, Sun K (2015) Polyurethane sponge facilitating highly dispersed TiO2 nanoparticles on reduced graphene oxide sheets for enhanced photoelectro-oxidation of ethanol. J Mater Chem A 3:15675–15682CrossRefGoogle Scholar
  19. 19.
    Kalupson J, Ma D, Randall C, Rajagopalan R, Adu K (2014) Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes. J Phys Chem C 118:2943–2952CrossRefGoogle Scholar
  20. 20.
    Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, Ni K, Tao Z, Ikram M, Ji H, Zhu Y (2016) A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv Mater 28:5222–5228CrossRefGoogle Scholar
  21. 21.
    Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson T, Tak J, King’ondu C, Holt C, Olsen B, Tak J, Harfield D, Anyia A, Mitlin D (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141CrossRefGoogle Scholar
  22. 22.
    Qie L, Chen W, Wang Z, Shao Q, Li X, Yuan L, Hu X, Zhang W, Huang Y (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRefGoogle Scholar
  23. 23.
    Luo H, Liu Z, Chao L, Wu X, Lei X, Chang Z, Sun X (2015) Synthesis of hierarchical porous n-doped sandwich-type carbon composites as high-performance supercapacitor electrodes. J Mater Chem A 3:3667–3675CrossRefGoogle Scholar
  24. 24.
    Wang J, Shen L, Ding B, Nie P, Deng H, Dou H, Zhang X (2014) Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Adv 4:7538–7544CrossRefGoogle Scholar
  25. 25.
    Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473CrossRefGoogle Scholar
  26. 26.
    Li X, Tang Y, Song J, Yang W, Wang M, Zhu C, Zhao W, Zheng J, Lin Y (2018) Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129:236–244CrossRefGoogle Scholar
  27. 27.
    Tseng LH, Hsiao CH, Dung ND, Hsieh PY, Lee CY, Tai NH (2018) Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim Acta 266:284–292CrossRefGoogle Scholar
  28. 28.
    Veerakumar P, Rajkumar C, Chen S, Thirumalraj B, Lin K (2018) Activated porous carbon supported rhenium composites as electrode materials for electrocatalytic and supercapacitor applications. Electrochim Acta 271:433–447CrossRefGoogle Scholar
  29. 29.
    Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRefGoogle Scholar
  30. 30.
    Farzanaa R, Rajaraoa R, Bhatb BR, Sahajwallaa V (2018) Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs(CDs). J Ind Eng Chem 65:387–396CrossRefGoogle Scholar
  31. 31.
    Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564CrossRefGoogle Scholar
  32. 32.
    Shan D, Yang J, Liu W, Yan J, Fan Z (2016) Biomass-derived three-dimensional honeycomblike hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J Mater Chem A 4:13589–13602CrossRefGoogle Scholar
  33. 33.
    Ye Z, Wang F, Jia C, Shao Z (2018) Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. J Mater Sci 53:12374–12387.  https://doi.org/10.1007/s10853-018-2487-x CrossRefGoogle Scholar
  34. 34.
    Tang Z, Jiang S, Shen S, Yang J (2018) The preparation of porous carbon spheres with hierarchical pore structure and the application for high-performance supercapacitors. J Mater Sci 53:13987–14000.  https://doi.org/10.1007/s10853-018-2584-x CrossRefGoogle Scholar
  35. 35.
    Deng P, Lei S, Wang W, Zhou W, Ou X, Chen L, Xiao Y, Cheng B (2018) Conversion of biomass waste to multi-heteroatom-doped carbon networks with high surface area and hierarchical porosity for advanced supercapacitors. J Mater Sci 53:14536–14547.  https://doi.org/10.1007/s10853-018-2630-8 CrossRefGoogle Scholar
  36. 36.
    Wang C, Wu D, Wang H, Gao Z, Jiang FXuK (2018) A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J Mater Chem A 6:1244–1254CrossRefGoogle Scholar
  37. 37.
    Shi C, Hu L, Guo K, Li H, Zhai T (2017) Highly porous carbon with graphene nanoplatelet microstructure derived from biomass waste for high-performance supercapacitors in universal electrolyte. Adv Sustain Syst 1:1600011CrossRefGoogle Scholar
  38. 38.
    Wang C, Wu D, Wang H, Gao Z, Jiang FXuK (2017) Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors. J Power Sources 363:375–383CrossRefGoogle Scholar
  39. 39.
    Feng H, Hu H, Dong H, Xiao Y, Cai Y, Lei B, Liu Y, Zheng M (2016) Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sources 302:164–173CrossRefGoogle Scholar
  40. 40.
    Sevilla M, Fuertes A (2013) A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. J Mater Chem A 1:13738–13741CrossRefGoogle Scholar
  41. 41.
    Qian W, Zhu J, Zhang Y, Wu X, Yan F (2015) Condiment-derived 3D architecture porous carbon for electrochemical supercapacitors. Small 11:4959–4969CrossRefGoogle Scholar
  42. 42.
    Borchardt L, Oschatz M, Kaskel S (2014) Tailoring porosity in carbon materials for supercapacitor applications. Mater Horiz 1:157–168CrossRefGoogle Scholar
  43. 43.
    Fan L, Chen T, Song W, Li X, Zhang S (2015) High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors. Sci Rep 5(15388):1–11Google Scholar
  44. 44.
    Fan Y, Liu P, Zhu B, Chen S, Yao K, Han R (2015) Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. Int J Hydrogen Energy 40:6188–6196CrossRefGoogle Scholar
  45. 45.
    Fan Y, Yang X, Zhu B, Liu P, Lu H (2014) Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J Power Sources 268:584–590CrossRefGoogle Scholar
  46. 46.
    Men B, Sun Y, Li M, Hu C, Zhang M, Wang L, Tang Y, Chen Y, Wan P, Pan J (2016) Hierarchical metal-free nitrogen-doped porous graphene/carbon composites as an efficient oxygen reduction reaction catalyst. ACS Appl Mater Interfaces 8:1415–1423CrossRefGoogle Scholar
  47. 47.
    Zhou L, Cao H, Zhu S, Hou L, Yuan C (2015) Hierarchical micro-/mesoporous N-and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chem 17:2373–2382CrossRefGoogle Scholar
  48. 48.
    Jiang Y, Yan J, Wu X, Shan D, Zhou Q, Jiang L, Yang D, Fan Z (2016) Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. J Power Sources 307:190–198CrossRefGoogle Scholar
  49. 49.
    Men B, Sun Y, Liu J, Tang Y, Chen Y, Wan P, Pan J (2016) Synergistically enhanced electrocatalytic activity of sandwich-like N-doped graphene/carbon nanosheets decorated by Fe and S for oxygen reduction reaction. ACS Appl Mater Interfaces 8:19533–19541CrossRefGoogle Scholar
  50. 50.
    Hulicova-Jurcakova D, Seredych M, Lu G, Bandosz T (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447CrossRefGoogle Scholar
  51. 51.
    Long C, Jiang L, Wu X, Jiang Y, Yang D, Wang C, Wei T, Fan Z (2015) Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 93:412–420CrossRefGoogle Scholar
  52. 52.
    Xu Y, Lin Z, Zhong X, Huang X, Weiss N, Huang Y, Duan X (2014) Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun 5:1–8Google Scholar
  53. 53.
    Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong C, Umar A (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129CrossRefGoogle Scholar
  54. 54.
    Liu X, Zheng M, Xiao Y, Yang Y, Yang L, Liu Y, Lei B, Dong H, Zhang H, Fu H (2013) Microtube bundle carbon derived from paulownia sawdust for hybrid supercapacitor electrodes. ACS Appl Mater Interfaces 5:4667–4677CrossRefGoogle Scholar
  55. 55.
    Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127CrossRefGoogle Scholar
  56. 56.
    Yuan K, Hu T, Xu Y, Graf R, Brunklaus G, Forster M, Chen Y, Scherf U (2016) Engineering the morphology of carbon materials: 2D porous carbon nanosheets for high-performance supercapacitors. ChemElectroChem 3:822–828CrossRefGoogle Scholar
  57. 57.
    Liu C, Wang J, Li J, Zeng M, Luo R, Shen J, Sun X, Han W, Wang L (2016) Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors. ACS Appl Mater Interfaces 87:194–7204Google Scholar
  58. 58.
    Rufford T, Hulicova-Jurcakova D, Zhu Z, Lu G (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10:1594–1597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied ElectrochemistryBeijing University of Chemical TechnologyBeijingChina
  2. 2.North Institute for Scientific and Technical InformationBeijingChina

Personalised recommendations