Advertisement

Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars

  • Y. Q. Wu
  • S. Gao
  • R. K. Kang
  • H. Huang
Ceramics
  • 28 Downloads

Abstract

The deformation of single-crystal beta-phase gallium oxide (or β-Ga2O3) micro-pillars under compression was investigated with the aid of transmission electron microscopy. High-density stacking faults were the dominant deformation defects in the plastically deformed micro-pillars. Micro-cracks were found along (200), (001) and (010) lattice planes and fracture occurred along (200) lattice plane when compressive strain was sufficiently great. Lattice bending was also observed in the fractured pillar. The average fracture stress and strain of β-Ga2O3 being measured are 7.25 ± 1.11 GPa and 3.80 ± 0.57%, respectively, which have never been reported previously.

Notes

Acknowledgements

This work was financially supported by the Australia Research Council (ARC) under Discovery Project Scheme (DP180103275). SG was funded by the Youth Program of National Natural Science Foundation of China (51505063).

References

  1. 1.
    Tippins HH (1965) Optical absorption and photoconductivity in the Band Edge of β-Ga2O3. Phys Rev 140:A316–A319CrossRefGoogle Scholar
  2. 2.
    Pearton SJ, Yang J, Cary PH IV, Ren F, Kim J, Tadjer MJ, Mastro MA (2018) A review of Ga2O3 materials, processing, and devices. Appl Phys Rev 5:011301CrossRefGoogle Scholar
  3. 3.
    Stepanov SI, Nikolaev VI, Bougrov VE, Romanov AE (2016) Gallium oxide: properties and applications—a review. Rev Adv Mater Sci 44:63–86Google Scholar
  4. 4.
    Muhammed MM, Peres M, Yamashita Y, Morishima Y, Sato S, Franco N, Lorenz K, Kuramata A, Roqan IS (2014) High optical and structural quality of GaN epilayers grown on \( \left( {\bar{2}01} \right) \) β-Ga2O3. Appl Phys Lett 105:042112CrossRefGoogle Scholar
  5. 5.
    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S (2012) Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett 100:013504CrossRefGoogle Scholar
  6. 6.
    Mastro MA, Kuramata A, Calkins J, Kim J, Ren F, Peartong SJ (2017) Opportunities and future directions for Ga2O3. Ecs J Solid State Sci Technol 6:P356–P359CrossRefGoogle Scholar
  7. 7.
    Bartic M, Baban CI, Suzuki H, Ogita M, Isai M (2007) β-Gallium oxide as oxygen gas sensors at a high temperature. J Am Ceram Soc 9:2879–2884CrossRefGoogle Scholar
  8. 8.
    Gallium oxide trumps traditional wide bandgap semiconductors. www.compoundsemiconductornet. Accessed 2 Oct 2018
  9. 9.
    Dai ZR, Pan ZW, Wang ZL (2002) Gallium oxide nanoribbons and nanosheets. J Phys Chem B 106:902–904CrossRefGoogle Scholar
  10. 10.
    Zheng X, Lee J, Rafique S, Han L, Zorman CA, Zhao H, Feng PXL (2017) Ultrawide band gap β-Ga2O3 nanomechanical resonators with spatially visualized multimode motion. ACS Appl Mater Inter 9:43090–43097CrossRefGoogle Scholar
  11. 11.
    Geller S (1960) Crystal structure of β-Ga2O3. J Chem Phys 33:676–684CrossRefGoogle Scholar
  12. 12.
    Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M, Brützam M, Bertram R, Ganschow S, Fornari R (2010) Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol 45(12):1229–1236CrossRefGoogle Scholar
  13. 13.
    Nikolaev VI, Maslov V, Stepanov SI, Pechnikov AI, Krymov V, Nikitina IP, Guzilova LI, Bougrov VE, Romanov AE (2017) Growth and characterization of β-Ga2O3 crystals. J Cryst Growth 457:132–136CrossRefGoogle Scholar
  14. 14.
    Villora EG, Shimamura K, Yoshikawa Y, Aoki K, Ichinose N (2004) Large-size beta-Ga2O3 single crystals and wafers. J Cryst Growth 270:420–426CrossRefGoogle Scholar
  15. 15.
    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S (2016) High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys 55:1202A2CrossRefGoogle Scholar
  16. 16.
    Higashiwaki M, Jessen GH (2018) Guest Editorial: the dawn of gallium oxide microelectronics. Appl Phys Lett 112:060401CrossRefGoogle Scholar
  17. 17.
    Pei ZJ, Fisher GR, Liu J (2008) Grinding of silicon wafers: a review from historical perspectives. Int J Mach Tool Manuf 48:1297–1307CrossRefGoogle Scholar
  18. 18.
    Gao S, Wu YQ, Kang RK, Huang H (2018) Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3. Mater Sci Semicon Proc 79:165–170CrossRefGoogle Scholar
  19. 19.
    Wu YQ, Gao S, Huang H (2017) The deformation pattern of single crystal β-Ga2O3 under nanoindentation. Mater Sci Semicon Proc 71:321–325CrossRefGoogle Scholar
  20. 20.
    Lawn B (1993) Fracture of brittle solids. Cambridge Press, CambridgeCrossRefGoogle Scholar
  21. 21.
    Jiang L, Chawla N (2010) Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scr Mater 63:480–483CrossRefGoogle Scholar
  22. 22.
    Fei HY, Abraham A, Chawla N, Jiang HQ (2012) Evaluation of micro-pillar compression tests for accurate determination of elastic-plastic constitutive relations. J Appl Mech 79:061011CrossRefGoogle Scholar
  23. 23.
    Langford RM, Petford-Long AK (2001) Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J Vac Sci Technol, A 19:2186–2193CrossRefGoogle Scholar
  24. 24.
    An Q, Li GD (2017) Shear-induced mechanical failure of β-Ga2O3 from quantum mechanics simulations. Phys Rev B 96:144113CrossRefGoogle Scholar
  25. 25.
    Gao HJ, Huang YG (2003) Geometrically necessary dislocation and size-dependent plasticity. Scr Mater 48:113–118CrossRefGoogle Scholar
  26. 26.
    Frick CP, Clark BG, Orso S, Schneider AS, Arzt E (2008) Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng, A 489:319–329CrossRefGoogle Scholar
  27. 27.
    de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande CK, van der Zwaag S, Plata JJ, Toher C, Curtarolo S, Ceder G, Persson KA, Asta M (2015) Charting the complete elastic properties of inorganic crystalline compounds. Sci Data 2:150009CrossRefGoogle Scholar
  28. 28.
    Persson K (2014) Materials data on Ga2O3 (SG:12) by Materials Project mp-886Google Scholar
  29. 29.
    Östlund F, Rzepiejewska-Malyska K, Leifer K, Hale LM, Tang Y, Ballarini R, Gerberich WW, Michler J (2009) Brittle-to-Ductile transition in uniaxial compression of silicon pillars at room temperature. Adv Funct Mater 19:2439–2444CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Mining EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of EducationDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations