Journal of Materials Science

, Volume 53, Issue 23, pp 15907–15914 | Cite as

Excitation-dependent carbon dots powders based on dehydration condensation by microwave–hydrothermal method

  • Kun Zheng
  • Li GuanEmail author
  • Haotian Ma
  • Shuya Zhao
  • Jing Zhao
  • Zhaoyang Wang
  • Guoyi Dong
  • Zhiren WeiEmail author
  • Xu LiEmail author
Chemical routes to materials


A green and economical microwave–hydrothermal method is employed to prepare carbon dots (CDs) that low-cost dl-malic acid serves as the carbon source and the formamide serves simultaneously as the pyrolysis solvent and carbon source. In the reaction process, neither assistant catalytic treatment nor further surface modification is necessary. We obtain better disperse CDs powders whose quantum yield reaches 25% as well as explain the dehydration condensation reaction mechanism based on the analysis by XPS and FTIR data. The luminescent properties are investigated in detail, and the results reveal that the excitation-dependent feature of as-prepared CDs has the potential for anti-counterfeiting mark and luminescence picture field.



This work was supported by the National Science Foundation of China (No. 61205180), the Young Top-notch Talent Support Program of Hebei Province and the Distinguished Young Scholars of Hebei University (2012JQ01). We also appreciate the National Science Foundation of Hebei University (Nos. 799207217040, 799207217035, 799207217027).

Supplementary material

10853_2018_2764_MOESM1_ESM.docx (268 kb)
Supplementary material 1 (DOCX 267 kb)


  1. 1.
    Xu X, Ray R, Gu Y, Ploehn H, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737CrossRefGoogle Scholar
  2. 2.
    Feng TL, Zeng QS, Lu SY, Yan XJ, Liu JJ, Tao SY, Yang MX, Yang B (2018) Color-tunable carbon dots possessing solid-state emission for full-color light-emitting diodes applications. ACS Photonics 5(2):502–510CrossRefGoogle Scholar
  3. 3.
    Yuan FL, Yuan T, Sui LZ, Wang ZB, Xi ZF, Li YC, Li XH, Fan LZ, Tan Z, Chen AM, Jin MX, Yang SH (2018) Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat Commun 9:2249-1–2249-11Google Scholar
  4. 4.
    Ding H, Wei JS, Zhang P, Zhou ZY, Gao QY, Xiong HM (2018) Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14:1800612CrossRefGoogle Scholar
  5. 5.
    Ge JC, Jia QY, Liu WM, Guo L, Liu QY, Lan MH, Zhang HY, Meng XM, Wang PF (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27:4169–4177CrossRefGoogle Scholar
  6. 6.
    Zhu JY, Bai X, Chen X, Xie ZF, Zhu YS, Pan GC, Zhai Y, Zhang HZ, Dong B, Song HW (2018) Carbon dots with efficient solid-state red-light emission through the step-by-step surface modification towards light-emitting diodes. Dalton Trans 47:3811–3818CrossRefGoogle Scholar
  7. 7.
    Wang DY, Khan WU, Tang ZB, Wang YH (2018) Applicability evaluation of bright green emitting carbon dots in the solid state for white light-emitting diodes. Chem Asian J 13(3):292–298CrossRefGoogle Scholar
  8. 8.
    Wang ZF, Yuan FL, Li XH, Li YC, Zhong HZ, Fan LZ, Yang SH (2017) 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv Mater 29(37):1702910-1–1702910-7Google Scholar
  9. 9.
    Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H (2016) Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 27:7782–7787CrossRefGoogle Scholar
  10. 10.
    Kozák O, Datta KKR, Greplová M, Ranc V, Kašlík J, Zbořil R (2013) Surfactant-derived amphiphilic carbon dots with tunable photoluminescence. J Phys Chem C 117:24991–24996CrossRefGoogle Scholar
  11. 11.
    Yang WN, Zhang H, Lai JX, Peng XY, Hu YP, Gu W, Ye L (2018) Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging. Carbon 128:78–85CrossRefGoogle Scholar
  12. 12.
    Sun M, Qu S, Hao Z, Ji W, Jing P, Zhang H, Zhang L, Zhao J, Shen D (2014) Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites. Nanoscale 6:13076–13081CrossRefGoogle Scholar
  13. 13.
    Lei B, Li W, Zhang H, Wang J, Liu Y, Zhuang J, Chen S (2015) Carbon dot grafted SrAl2O4:Eu, Dy dual-emitting phosphor for ratiometric temperature sensing. RSC Adv 5:89238–89243CrossRefGoogle Scholar
  14. 14.
    Sun YQ, Wang XJ, Wang C, Tong DY, Wu Q, Jiang KL, Jiang YN, Wang CX, Yang MH (2018) Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim Acta 185(1):83CrossRefGoogle Scholar
  15. 15.
    Xu MH, He GL, Li ZH, He FJ, Gao F, Su YJ, Zhang LY, Yang Z, Zhang YF (2014) A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 6:10307–10315CrossRefGoogle Scholar
  16. 16.
    Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed Engl 46:6473–6475CrossRefGoogle Scholar
  17. 17.
    Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491CrossRefGoogle Scholar
  18. 18.
    Vinci JC, Ferrer IM, Seedhouse SJ, Bourdon AK, Reynard JM, Foster BA, Bright FV, Colon LA (2013) Hidden properties of carbon dots revealed after HPLC fractionation. J Phys Chem Lett 4:239–243CrossRefGoogle Scholar
  19. 19.
    Fuyuno N, Kozawa D, Miyauchi Y, Mouri S, Kitaura R, Shinohara H, Yasuda T, Komatsu N, Matsuda K (2014) Drastic change in photoluminescence properties of graphene quantum dots by chromatographic separation. Adv Opt Mater 2:983–989CrossRefGoogle Scholar
  20. 20.
    Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed Engl 52:3953–3957CrossRefGoogle Scholar
  21. 21.
    Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv 2:3602–3606CrossRefGoogle Scholar
  22. 22.
    Lu WB, Qin XY, Liu S, Chang GH, Zhang YW, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84:5351–5357CrossRefGoogle Scholar
  23. 23.
    Krysmann MJ, Kelarakis A, Dallas P, Giannelis EP (2012) Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J Am Chem Soc 134:747–750CrossRefGoogle Scholar
  24. 24.
    De B, Karak N (2013) A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv 3:8286–82903CrossRefGoogle Scholar
  25. 25.
    Liu S, Tian J, Wang L, Luo Y, Zhai J, Sun X (2011) Preparation of photoluminescent carbon nitride dots from CCl4 and 1, 2-ethylenediamine: a heat-treatment-based strategy. J Mater Chem 21:11726–11729CrossRefGoogle Scholar
  26. 26.
    Fleutot S, Dupin JC, Renaudin G, Martinez H (2011) Intercalation and grafting of benzene derivatives into zinc-aluminum and copper-chromium layered double hydroxide hosts: an XPS monitoring study. Phys Chem Chem Phys 13:17564–17578CrossRefGoogle Scholar
  27. 27.
    Qu D, Zheng M, Zhang LG, Zhao HF, Xie ZG, Jing XB, Haddad RE, Fan HY, Sun ZC (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:1–9Google Scholar
  28. 28.
    Bojdys MJ, Muller JO, Antonietti M, Thomas A (2008) Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem Eur J 14:8177–8182CrossRefGoogle Scholar
  29. 29.
    Liu S, Tian JQ, Wang L, Luo YL, Lu WB, Sun XP (2011) Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosens Bioelectron 26:4491–4496CrossRefGoogle Scholar
  30. 30.
    Arcudi F, Dordevic L, Prato M (2016) Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nano dots. Angew Chem Int Ed Engl 55:2107–2112CrossRefGoogle Scholar
  31. 31.
    Ding H, Xiong HM (2015) Exploring the blue luminescence origin of nitrogen-doped carbon dots by controlling the water amount in synthesis. RSC Adv 5:66528–66533CrossRefGoogle Scholar
  32. 32.
    Jia XF, Li J, Wang EK (2012) One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4:5572–5575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and TechnologyHebei UniversityBaodingPeople’s Republic of China

Personalised recommendations