Advertisement

Journal of Materials Science

, Volume 53, Issue 21, pp 15051–15063 | Cite as

A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation

  • Ning Liu
  • Pin Tao
  • Chuwen Jing
  • Wenyuan Huang
  • Xiaodong Zhang
  • Minghong Wu
  • Jianqiu Lei
  • Liang Tang
Chemical routes to materials

Abstract

Herein, we reported a facile method for fabricating nanoflower-like Co3O4 catalysts via calcination treatment based on ZIF-67. The catalytic performances of the obtained Co3O4 catalysts were evaluated for the model reaction of CO oxidation. The results demonstrated that calcination temperature had a strong effect on the structure and catalytic reaction activity of Co3O4 catalyst. Co3O4 catalyst prepared at 400 °C (Co3O4-400) exhibited the optimum catalytic activity with a complete CO conversion temperature of 105 °C. This phenomenon was ascribed to the higher specific surface areas, smaller particle size, unique structure, good low-temperature reduction and higher abundances of surface Co2+ and adsorbed oxygen species. The addition of 1.0% water vapor had a negative effect on CO oxidation and the prepared Co3O4-400 catalyst presented long-term stability.

Notes

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 41673093, 41473108, 41773128, 41573096, 51508327).

Supplementary material

10853_2018_2696_MOESM1_ESM.docx (462 kb)
Supplementary material 1 (DOCX 461 kb)

References

  1. 1.
    Yang YQ, Dong H, Wang Y, Wang YX, Liu N, Wang DJ, Zhang XD (2017) A facile synthesis for porous CuO/Cu2O composites derived from MOFs and their superior catalytic performance for CO oxidation. Inorg Chem Commun 86:74–77.  https://doi.org/10.1016/j.inoche.2017.09.027 CrossRefGoogle Scholar
  2. 2.
    Yang YQ, Dong H, Wang Y, He C, Wang YX, Zhang XD (2018) Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. J Solid State Chem 258:582–587.  https://doi.org/10.1016/j.jssc.2017.11.033 CrossRefGoogle Scholar
  3. 3.
    Cui LF, Zhao D, Yang Y, Wang YX, Zhang XD (2017) Synthesis of highly efficient α-Fe2O3 catalysts for CO oxidation derived from MIL-100(Fe). J Solid State Chem 247:168–172.  https://doi.org/10.1016/j.jssc.2017.01.013 CrossRefGoogle Scholar
  4. 4.
    Zhang XD, Dong H, Wang Y, Liu N, Zuo YH, Cui LF (2016) Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation. Chem Eng J 283:1097–1107.  https://doi.org/10.1016/j.cej.2015.08.064 CrossRefGoogle Scholar
  5. 5.
    Zheng FC, Yin ZC, Xu SH, Zhang YG (2016) Formation of Co3O4 hollow polyhedrons from metal-organic frameworks and their catalytic activity for CO oxidation. Mater Lett 182:214–217.  https://doi.org/10.1016/j.matlet.2016.06.108 CrossRefGoogle Scholar
  6. 6.
    Lv S, Xia G, Jin C, Hao C, Wang L, Li J, Zhang Y, Zhu JJ (2016) Low-temperature CO oxidation by Co3O4 nanocubes on the surface of Co(OH)2 nanosheets. Catal Commun 86:100–103.  https://doi.org/10.1016/j.catcom.2016.08.020 CrossRefGoogle Scholar
  7. 7.
    Xie XW, Li Y, Liu ZQ, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239):746–749.  https://doi.org/10.1038/nature07877 CrossRefGoogle Scholar
  8. 8.
    Yu FL, Qu ZP, Zhang XD, Fu Q, Wang Y (2013) Investigation of CO and formaldehyde oxidation over mesoporous Ag/Co3O4 catalysts. J Energy Chem 22:845–852.  https://doi.org/10.1016/S2095-4956(14)60263-1 CrossRefGoogle Scholar
  9. 9.
    Hu LH, Sun KQ, Peng Q, Xu BQ, Li YD (2010) Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res 3:363–368.  https://doi.org/10.1007/s12274-010-1040-2 CrossRefGoogle Scholar
  10. 10.
    Song W, Poyraz AS, Meng Y, Ren Z, Chen SY, Suib SL (2014) Mesoporous Co3O4 with controlled porosity: inverse micelle synthesis and high-performance catalytic CO oxidation at − 60 °C. Chem Mater 26:4629–4639.  https://doi.org/10.1021/cm502106v CrossRefGoogle Scholar
  11. 11.
    Huang WY, Liu N, Zhang XD, Wu MH, Tang L (2017) Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl Surf Sci 425:107–116.  https://doi.org/10.1016/j.apsusc.2017.07.050 CrossRefGoogle Scholar
  12. 12.
    Liu N, Huang WY, Zhang XD, Tang L, Wang L, Wang YX, Wu MH (2018) Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl Catal B 221:119–128.  https://doi.org/10.1016/j.apcatb.2017.09.020 CrossRefGoogle Scholar
  13. 13.
    Zhang XD, Yang Y, Huang WY, Yang YQ, Wang YX, He C, Liu N, Wu MH, Tang L (2018) g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater Res Bull 99:349–358.  https://doi.org/10.1016/j.materresbull.2017.11.028 CrossRefGoogle Scholar
  14. 14.
    Zhang XD, Li HX, Lv XT, Xu JC, Wang YX, He C, Liu N, Yang YQ, Wang Y (2018) Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: the formation mechanism and the structure changes during the application for CO oxidation. Chem Eur J 24:8822–8832.  https://doi.org/10.1002/chem.201800773 CrossRefGoogle Scholar
  15. 15.
    Zhang XD, Hou FL, Yang Y, Wang Y, Liu N, Chen D, Yang YQ (2017) A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation. Appl Surf Sci 423:771–779.  https://doi.org/10.1016/j.apsusc.2017.06.235 CrossRefGoogle Scholar
  16. 16.
    Zhang XD, Yang Y, Song L, Wang YX, He C, Wang Z, Cui LF (2018) High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol Catal 447:80–89.  https://doi.org/10.1016/j.mcat.2018.01.007 CrossRefGoogle Scholar
  17. 17.
    Zhang XD, Yang Y, Lv XT, Wang YX, Cui LF (2017) Effects of preparation method on the structure and catalytic activity of Ag-Fe2O3 catalysts derived from MOFs. Catalysts 7:382.  https://doi.org/10.3390/catal7120382 CrossRefGoogle Scholar
  18. 18.
    Borhani S, Moradia M, Kiani MA, Hajati S, Toth J (2017) CoxZn1−x ZIF-derived binary Co3O4/ZnO wrapped by 3D reduced graphene oxide for asymmetric supercapacitor: comparison of pure and heat-treated bimetallic MOF. Ceram Int 43:14413–14425.  https://doi.org/10.1016/j.ceramint.2017.07.211 CrossRefGoogle Scholar
  19. 19.
    Bigdeli H, Moradi M, Hajati S, Kiani MA, Toth J (2017) Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co3O4 by the new indirect solid state thermolysis as cathode material of asymmetric supercapacitor. Physica E 94:158–166.  https://doi.org/10.1016/j.physe.2017.08.005 CrossRefGoogle Scholar
  20. 20.
    Wang WX, Li YW, Zhang RJ, He DH, Liu HL, Liao SJ (2011) Metal-organic framework as a host for synthesis of nanoscale Co3O4 as an active catalyst for CO oxidation. Catal Commun 12:875–879.  https://doi.org/10.1016/j.catcom.2011.02.001 CrossRefGoogle Scholar
  21. 21.
    Yan N, Chen QW, Wang F, Wang Y, Zhong H, Hu L (2012) High catalytic activity for CO oxidation of Co3O4 nanoparticles in SiO2 nanocapsules. J Mater Chem A 1:637–643.  https://doi.org/10.1039/C2TA00132B CrossRefGoogle Scholar
  22. 22.
    Bao SX, Yan N, Shi XH, Li R, Chen QW (2014) High and stable catalytic activity of porous Ag/Co3O4 nanocomposites derived from MOFs for CO oxidation. Appl Catal A 487:189–194.  https://doi.org/10.1016/j.apcata.2014.09.015 CrossRefGoogle Scholar
  23. 23.
    Zheng FC, Yin ZC, Xu SH, Zhang YG (2016) Formation of Co3O4 hollow polyhedrons from metal-organic frameworks and their catalytic activity for CO oxidation. Mater Lett 182:214–217.  https://doi.org/10.1016/j.matlet.2016.06.108 CrossRefGoogle Scholar
  24. 24.
    Zhang C, Zhang L, Xu GC, Ma X, Li YH, Zhang CY, Jia DZ (2017) Metal organic framework-derived Co3O4 microcubes and their catalytic applications in CO oxidation. New J Chem 41:1631–1636.  https://doi.org/10.1039/c6nj02507b CrossRefGoogle Scholar
  25. 25.
    Li GQ, Zhang CH, Wang Z, Huang H, Peng H, Li XB (2018) Fabrication of mesoporous Co3O4 oxides by acid treatment and their catalytic performances for toluene oxidation. Appl Catal A 550:67–76.  https://doi.org/10.1016/j.apcata.2017.11.003 CrossRefGoogle Scholar
  26. 26.
    Shen LS, Wang CX (2014) Hierarchical Co3O4 nanoparticles embedded in a carbon matrix for lithium-ion battery anode materials. Electrochim Acta 133:16–22.  https://doi.org/10.1016/j.electacta.2014.03.182 CrossRefGoogle Scholar
  27. 27.
    Li GC, Hua XN, Liu PF, Xie YX, Han L (2015) Porous Co3O4 microflowers prepared by thermolysis of metal-organic framework for supercapacitor. Mater Chem Phys 168:127–131.  https://doi.org/10.1016/j.matchemphys.2015.11.011 CrossRefGoogle Scholar
  28. 28.
    Shahabuddin S, Muhamad Sarih N, Mohamad S, Baharin SNA (2016) Synthesis and characterization of Co3O4 nanocube doped polyaniline nanocomposites with enhanced methyl orange adsorption from aqueous solution. RSC Adv 6(49):43388–43400.  https://doi.org/10.1039/C6RA04757B CrossRefGoogle Scholar
  29. 29.
    Shahida MM, Rameshkumar P, Basirunc WJ, Chingd JC, Huange NM (2017) Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochim Acta 237:61–68.  https://doi.org/10.1016/j.electacta.2017.03.088 CrossRefGoogle Scholar
  30. 30.
    Kleitz F, Berube F, Guillet-Nicolas R, Yang CM, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114:9344–9355.  https://doi.org/10.1021/jp909836v CrossRefGoogle Scholar
  31. 31.
    Ma CY, Wang DH, Xue WJ, Dou BJ, Wang HL, Hao ZP (2011) Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environ Sci Technol 45:3628–3634.  https://doi.org/10.1021/es104146v CrossRefGoogle Scholar
  32. 32.
    Ma CY, Mu Z, Li JJ, Jin YG, Cheng J, Lu GQ, Hao ZP, Qiao SZ (2010) Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. J Am Chem Soc 132:2608–2613.  https://doi.org/10.1021/ja906274t CrossRefGoogle Scholar
  33. 33.
    Zhang YJ, Zhang L, Deng JG, Xie SH, Yang HG, Jiang Y, Dai HX (2015) Synthesis, characterization, and catalytic properties of MnOx/SBA-16 for toluene oxidation. In: Proceedings of the 2014 international conference on materials science and energy engineering (Cmsee 2014), p 154. https://doi.org/10.1142/9789814678971_0024
  34. 34.
    Zhang XD, Li HX, Hou FL, Yang Y, Dong H, Liu N, Wang YX, Cui LF (2017) Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl Surf Sci 411:27–33.  https://doi.org/10.1016/j.apsusc.2017.03.179 CrossRefGoogle Scholar
  35. 35.
    Tang CW, Yu WY, Lin CJ, Wang CB, Chien SH (2007) Phase transformation in CeO2-Co3O4 binary oxide under reduction and calcination pretreatments. Catal Lett 116:161–166.  https://doi.org/10.1007/s10562-007-9105-x CrossRefGoogle Scholar
  36. 36.
    Baidya T, Murayama T, Bera P, Safonova OV, Steiger P, Katiyar NK, Biswas K, Haruta M (2017) Low-temperature CO oxidation over combustion made Fe- and Cr-doped Co3O4 catalysts: role of dopant’s nature toward achieving superior catalytic activity and stability. J Phys Chem C 121:15256–15265.  https://doi.org/10.1021/acs.jpcc.7b04348 CrossRefGoogle Scholar
  37. 37.
    Yan XD, Tian LH, He M, Chen XB (2015) Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett 15:6015–6021.  https://doi.org/10.1021/acs.nanolett.5b02205 CrossRefGoogle Scholar
  38. 38.
    Cai T, Huang H, Deng W, Dai QG, Liu W, Wang XY (2015) Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl Catal B 166:393–405.  https://doi.org/10.1016/j.apcatb.2014.10.047 CrossRefGoogle Scholar
  39. 39.
    Rokicińska A, Natkański P, Dudek B, Drozdek M, Lityńska-Dobrzyńska L, Kuśtrowski P (2016) Co3O4-pillared montmorillonite catalysts synthesized by hydrogel-assisted route for total oxidation of toluene. Appl Catal B 195:59–68.  https://doi.org/10.1016/j.apcatb.2016.05.008 CrossRefGoogle Scholar
  40. 40.
    Jiang Y, Xie SH, Yang HG, Deng JG, Liu YX, Dai HX (2017) Mn3O4-Au/3DOM La0.6Sr0.4CoO3: high-performance catalysts for toluene oxidation. Catal Today 281:437–446.  https://doi.org/10.1016/j.apcatb.2016.05.008 CrossRefGoogle Scholar
  41. 41.
    Wang FG, Zhang LJ, Xu LL, Deng ZY, Shi WD (2017) Low temperature CO oxidation and CH4 combustion over Co3O4 nanosheets. Fuel 203:419–429.  https://doi.org/10.1016/j.fuel.2017.04.140 CrossRefGoogle Scholar
  42. 42.
    Ding K, Wang D, Yang P, Hou PK, Cheng X (2016) Enhanced CO catalytic oxidation of flower-like Co3O4 composed of small nanoparticles. RSV Adv 6:16208–16214.  https://doi.org/10.1039/C6RA01092J CrossRefGoogle Scholar
  43. 43.
    Wang J, Zhong LP, Lu JC, Chen R, Lei YQ, Chen KZ, Han CY, He SF, Wan GP, Luo YM (2017) A solvent-free method to rapidly synthesize CuO-CeO2 catalysts to enhance their CO preferential oxidation: effects of Cu loading and calcination temperature. Mol Catal 443:241–252.  https://doi.org/10.1016/j.mcat.2017.10.012 CrossRefGoogle Scholar
  44. 44.
    Wu MZ, Zhan WC, Guo Y, Wang YS, Guo YL, Gong XQ, Wang L, Lu GZ (2016) Solvent free selective oxidation of cyclohexane with molecular oxygen over manganese oxides: effect of the calcination temperature. Chin J Catal 37:184–192.  https://doi.org/10.1016/S1872-2067(15)60983-4 CrossRefGoogle Scholar
  45. 45.
    Liu CX, Liu Q, Bai L, Dong AQ, Liu GB, Wen SH (2013) Structure and catalytic performances of nanocrystalline Co3O4 catalysts for low temperature CO oxidation prepared by dry and wet synthetic routes. J Mol Catal A 370:1–6.  https://doi.org/10.1016/j.molcata.2012.12.003 CrossRefGoogle Scholar
  46. 46.
    Wang C, Tian CC, Guo YL, Zhang ZD, Hua WC, Zhan WC, Guo Y, Wang L, Lu GZ (2018) Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions. J Hazard Mater 342:290–296.  https://doi.org/10.1016/j.jhazmat.2017.08.036 CrossRefGoogle Scholar
  47. 47.
    Rousseau S, Loridant S, Delichere P, Boreave A, Deloume JP, Vernoux P (2009) La(1-x)SrxCo1-yFeyO3 perovskites prepared by sol-gel method: characterization and relationships with catalytic properties for total oxidation of toluene. Appl Catal B 88:438–447.  https://doi.org/10.1016/j.apcatb.2008.10.022 CrossRefGoogle Scholar
  48. 48.
    Prasad R, Singh P (2012) A review on CO oxidation over copper chromite catalyst. Catal Rev 54:224.  https://doi.org/10.1080/01614940.2012.648494 CrossRefGoogle Scholar
  49. 49.
    El Kasmi A, Tian ZY, Vieker H, Beyer A, Chafik T (2016) Innovative CVD synthesis of Cu2O catalysts for CO oxidation. Appl Catal B 186:10–18.  https://doi.org/10.1016/j.apcatb.2015.12.034 CrossRefGoogle Scholar
  50. 50.
    Naofumi U, Masayuki U, Jun WY, Kazuyuki K (2002) Synthesis of CeO2 spherical fine particles by homogeneous precipitation method with polyethylene glycol. Chem Lett 31:854–855.  https://doi.org/10.1246/cl.2002.854 CrossRefGoogle Scholar
  51. 51.
    Gao Y, Shao N, Pei Y, Chen ZF, Zeng XC (2011) Catalytic activities of subnanometer gold clusters (Au16-Au18, Au20, and Au27-Au35) for CO oxidation. ACS Nano 10:7818–7829.  https://doi.org/10.1021/nn201817b CrossRefGoogle Scholar
  52. 52.
    Kouotou PM, Vieker H, Tian ZY, Ngamou PHT, Kasmi AE, Beyer A, Golzhauser A, Hoinghaus KK (2014) Structure-activity relation of spinel-type Co-Fe oxides for low-temperature CO oxidation. Catal Sci Technol 4:3359–3367.  https://doi.org/10.1039/c4cy00463a CrossRefGoogle Scholar
  53. 53.
    Zhang XD, Hou FL, Li HX, Yang Y, Wang YX, Liu N, Yang Y (2018) A strawsheave-like metal organic framework Ce-BTC derivative containing high specific surface area for improving the catalytic activity of CO oxidation reaction. Microporous Mesoporous Mater 259:211–219.  https://doi.org/10.1016/j.micromeso.2017.10.019 CrossRefGoogle Scholar
  54. 54.
    Rajasree R (2004) Transient kinetics of carbon monoxide oxidation by oxygen over supported palladium/ceria/zirconia three-way catalysts in the absence and presence of water and carbon dioxide. J Catal 22:36–43.  https://doi.org/10.1016/j.jcat.2003.12.014 CrossRefGoogle Scholar
  55. 55.
    Yang H, Lv K, Zhu JJ, Li Q, Tang DG, Ho WK, Li M, Carabineiro SAC (2017) Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4. Appl Surf Sci 401:333–340.  https://doi.org/10.1016/j.apsusc.2016.12.238 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environment and ArchitectureUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  3. 3.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations