Journal of Materials Science

, Volume 53, Issue 13, pp 9578–9588 | Cite as

Computational investigations of Cu-embedded MoS2 sheet for CO oxidation catalysis

  • Archana Sharma
  • Anurag Srivastava
  • Mushahid Husain
  • Mohd. Shahid Khan
Computation
  • 69 Downloads

Abstract

Elevated amount of CO levels in the atmosphere poses serious health and environmental hazards. Oxidation of CO using suitable catalysts is one of the methods to control it. By means of DFT calculations, single Cu atom doped in S vacancy of MoS2 nanosheet is studied for CO oxidation catalysis. Cu atom is strongly confined at the S-defective site of the MoS2 sheet, possessing high energy barrier for the diffusion to its neighboring sites. Adsorption energy, charge transfer and orbital hybridization of CO and O2 molecules adsorbed Cu-doped MoS2 sheet reveal that O2 is relatively more strongly adsorbed than CO. High adsorption energy of O2 (− 2.115 eV) and large charge transfer between O2 and Cu–MoS2 sheet (0.493e), compared to CO, make O2 adsorption more favorable, which extenuates CO poisoning and hence helps in the efficient CO oxidation process. The complete oxidation of CO takes place in two steps: \( {\text{CO}} + {\text{O}}_{2} \to {\text{OOCO}} \) with activation energy of 0.201 eV, succeeded by \( {\text{OOCO}} + {\text{CO}} \to 2{\text{CO}}_{2} \) without any energy barrier. Our results show that the basal plane of MoS2 sheet gets activated by embedding it with Cu metal, which can catalyze CO oxidation reaction effectively and without poisoning issues. The high activity, stability and low cost features can possibly encourage fabricating MoS2-based catalysts for CO oxidation reaction.

Notes

Acknowledgements

The authors are thankful to Jamia Millia Islamia for providing computational infrastructure. A. S. acknowledges the support from ABV-Indian Institute of Information Technology and Management for providing extended computational facilities, and she is very thankful to UGC for Basic Scientific Research (BSR) Fellowship.

Authors’ contributions

AS performed DFT calculations and drafted the manuscript. ASR and MH participated in the calculation part. MSK conceived of the study and helped in writing of the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Oh SH, Fisher GB, Carpenter JE, Goodman DW (1986) Comparative kinetic studies of CO–O2 and CO–NO reactions over single crystal and supported rhodium catalysts. J Catal 100:360–376CrossRefGoogle Scholar
  2. 2.
    Boubnov A, Dahl S, Johnson E, Molina AP, Simonsen SB, Cano FM, Helveg S, Lemus-Yegres LJ, Grunwaldt J-D (2012) Structure-activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions. Appl Catal B 126:315–325CrossRefGoogle Scholar
  3. 3.
    Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267CrossRefGoogle Scholar
  4. 4.
    Moroz BL, Pyrjaev PA, Zaikovskii VI, Bukhtiyarov VI (2009) Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: results of research activity at the Boreskov Institute of Catalysis. Catal Today 144:292–305CrossRefGoogle Scholar
  5. 5.
    Rodriguez-Gonzalez V, Zanella R, Calzada LA, Gomez R (2009) Low-temperature CO oxidation and long-term stability of Au/In2O3 − TIO2CATALYSTS. J Phys Chem C 113:8911–8917CrossRefGoogle Scholar
  6. 6.
    Hellman A, Klacar S, Gronbeck H (2009) Low temperature CO oxidation over supported ultrathin MgO films. J Am Chem Soc 131:16636–16637CrossRefGoogle Scholar
  7. 7.
    Alavi A, Hu P, Deutsch T, Silvestrelli PL, Hutter J (1998) CO oxidation on Pt (111): an ab initio density functional theory study. Phys Rev Lett 80:3650–3653CrossRefGoogle Scholar
  8. 8.
    Zhang CJ, Hu P (2001) CO oxidation on Pd (100) and Pd (111): a comparative study of reaction pathways and reactivity at low and medium coverages. J Am Chem Soc 123:1166–1172CrossRefGoogle Scholar
  9. 9.
    Kimble ML, Castleman AW Jr, Mitric R, Burgel C, Bonacic-Koutecky V (2004) Reactivity of atomic gold anions toward oxygen and the oxidation of CO: experiment and theory. J Am Chem Soc 126:2526–2535CrossRefGoogle Scholar
  10. 10.
    Eichler A (2002) CO oxidation on transition metal surfaces: reaction rates from first principles. Surf Sci 498:314–320CrossRefGoogle Scholar
  11. 11.
    Splendiani A, Sun L, Zhang YB, Li TS, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275CrossRefGoogle Scholar
  12. 12.
    Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRefGoogle Scholar
  13. 13.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12:1136–1140CrossRefGoogle Scholar
  15. 15.
    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80CrossRefGoogle Scholar
  16. 16.
    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501CrossRefGoogle Scholar
  17. 17.
    Song N, Wang Y, Gao H, Jiang W, Zhang J, Xu B, Sun Q, Jia Y (2015) Electric field improved hydrogen storage of Ca-decorated monolayer MoS2. Phys Lett A 379:815–819CrossRefGoogle Scholar
  18. 18.
    Putungan DP, Lin S-H, Wei C-M, Kuo J-L (2015) Li adsorption, hydrogen storage and dissociation using monolayer MoS2: an ab initio random structure searching approach. Phys Chem Chem Phys 17:11367–11374CrossRefGoogle Scholar
  19. 19.
    Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136–6144CrossRefGoogle Scholar
  20. 20.
    Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2009) Hydrogen evolution on nano-particulate transition metal sulphides. Faraday Discuss 140:219–317CrossRefGoogle Scholar
  21. 21.
    Rangarajan S, Mavrikakis M (2017) On the preferred active sites of promoted MoS2 for hydrodesulfurization with minimal organonitrogen inhibition. ACS Catal 7(1):501–509CrossRefGoogle Scholar
  22. 22.
    Wu Z, Whiffen MLV, Zhu W, Wang D, Smith KJ (2014) Effect of annealing temperature on Co–MoS2 nanosheets for hydrodesulfurization of dibenzothiophene. Catal Lett 144:261–267CrossRefGoogle Scholar
  23. 23.
    Liu B, Chen L, Liu G, Abbas AN, Fathi M, Zhou C (2014) High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8:5304–5314CrossRefGoogle Scholar
  24. 24.
    Donarelli M, Prezioso S, Perrozzi F, Bisti F, Nardone M, Giancaterini L, Cantalini C, Ottaviano L (2015) Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens Actuators, B 207(Part A):602–613CrossRefGoogle Scholar
  25. 25.
    Late DJ, Huang Y-K, Liu B, Acharya J, Shirodkar SN, Luo J, Yan A, Charles D, Waghmare UV, Dravid VP, Rao CNR (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891CrossRefGoogle Scholar
  26. 26.
    Cho B, Yoon J, Lim SK, Kim AR, Kim D-H, Park SG, Kwon J-D, Lee Y-J et al (2015) Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl Mater Interfaces 7:16775–16780CrossRefGoogle Scholar
  27. 27.
    Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830CrossRefGoogle Scholar
  28. 28.
    Chen Y, Song B, Tang X, Lu L, Xue J (2014) Ultra small Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10:1536–1543CrossRefGoogle Scholar
  29. 29.
    Zhou J, Qin J, Zhang X, Shi C, Liu E, Li J, Zhao N, He C (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9:3837–3848CrossRefGoogle Scholar
  30. 30.
    Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591CrossRefGoogle Scholar
  31. 31.
    Huang Y, Wu J, Xu X, Ho Y, Ni G, Zou Q, Koon G, Zhao W, Neto AHC, Eda G (2013) An innovative way of etching MoS2: characterization and mechanistic investigation. Nano Res 6:200–207CrossRefGoogle Scholar
  32. 32.
    Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F, Wang X, Wang J, Ni Z (2014) Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8:5738–5745CrossRefGoogle Scholar
  33. 33.
    Komsa HP, Krasheninnikov AV (2015) Native defects in bulk and monolayer MoS2 from first principles. Phys Rev B 91:125304CrossRefGoogle Scholar
  34. 34.
    Song EH, Wen Z, Jiang Q (2011) CO catalytic oxidation on copper-embedded graphene. J Phys Chem C 115:3678–3683CrossRefGoogle Scholar
  35. 35.
    Lu Y-H, Zhou M, Zhang C, Feng Y-P (2009) Metal-embedded graphene: a possible catalyst with high activity. J Phys Chem C 113:20156–20160CrossRefGoogle Scholar
  36. 36.
    Tang Y, Dai X, Yang Z, Liu Z, Pan L, Ma D, Lu Z (2014) Tuning the catalytic property of non-noble metallic impurities in graphene. Carbon 71:139–149CrossRefGoogle Scholar
  37. 37.
    Li Y, Zhou Z, Yu G, Chen W, Chen Z (2010) CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J Phys Chem C 114:6250–6254CrossRefGoogle Scholar
  38. 38.
    Huang C, Ye X, Chen C, Lin S, Xie D (2013) A computational investigation of CO oxidation on ruthenium-embedded hexagonal boron nitride nanosheets. Comput Theor Chem 1011:5–10CrossRefGoogle Scholar
  39. 39.
    Zhao P, Su Y, Zhang Y, Li S-J, Chen G (2011) CO catalytic oxidation on iron-embedded hexagonal boron nitride sheet. Chem Phys Lett 515:159–162CrossRefGoogle Scholar
  40. 40.
    Lin S, Ye X, Johnson RS, Guo H (2013) First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe Co, Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation. J Phys Chem C 117:17319–17326CrossRefGoogle Scholar
  41. 41.
    Ma D, Tang Y, Yang G, Zeng J, He C, Lu Z (2015) CO catalytic oxidation on iron-embedded monolayer MoS2. Appl Surf Sci 328:71–77CrossRefGoogle Scholar
  42. 42.
    Chen ZW, Yan JM, Zheng WT, Jiang Q (2015) Cu4 cluster doped monolayer MoS2 for CO oxidation. Sci Rep 5:11230CrossRefGoogle Scholar
  43. 43.
    Le D, Rawal TB, Rahman TS (2014) Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J Phys Chem C 118:5346–5351CrossRefGoogle Scholar
  44. 44.
    Hussain A (2013) Beneficial effect of Cu on a Cu-modified Au catalytic surface for CO oxidation reaction: a DFT study. J Phys Chem C 117:5084–5094CrossRefGoogle Scholar
  45. 45.
    Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234CrossRefGoogle Scholar
  46. 46.
    Yun WS, Lee JD (2014) Unexpected strong magnetism of Cu doped single-layer MoS2 and its origin. Phys Chem Chem Phys 16:8990–8996CrossRefGoogle Scholar
  47. 47.
    Jia X, Yang X, Li J, Liab D, Wang E (2014) Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem Commun 50:237–239CrossRefGoogle Scholar
  48. 48.
    Zhao B, Li CY, Liu LL, Zhou B, Zhang QK, Chen ZQ, Tang Z (2016) Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: a first-principles study. Appl Surf Sci 382:280–287CrossRefGoogle Scholar
  49. 49.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  50. 50.
    Mede A Materials design. http://www.materialsdesign.com
  51. 51.
    Grimme S (2006) Semi empirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  52. 52.
    Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  53. 53.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  54. 54.
    Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904CrossRefGoogle Scholar
  55. 55.
    Atomistix toolkit, Quantum wise division. http://quantumwise.com
  56. 56.
    Young DC (2001) Computational chemistry: a practical guide for applying techniques to real world problems. Wiley, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Advanced Material Research Group, CNT LabABV-Indian Institute of Information Technology and ManagementGwaliorIndia

Personalised recommendations