Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application

  • Zhuo Kang
  • Yong Li
  • Yinsheng Yu
  • Qingliang Liao
  • Zheng Zhang
  • Huijing Guo
  • Suicai Zhang
  • Jing Wu
  • Haonan Si
  • Xiaomei Zhang
  • Yue Zhang
Energy materials
  • 19 Downloads

Abstract

Herein, we report a facile two-step chemical bath deposition method for the preparation of NiCo2S4 nanowire arrays grown on three-dimensional graphene foams (3DGF) for advanced ECs. The porous structure of 3DGF can be used as an ideal scaffold for preparation of continuous fibrous composite electrodes and could avoid using the heavier metal collectors and binder. We realized a mixed dimensional heterostructure via direct synthesis of one-dimensional NiCo2S4 nanowires array on the seamlessly continuous spatial graphene foam, and further applied it as supercapacitor electrode materials. The unique nanowire arrays morphology results in an excellent property with a high specific capacitance of 1454.6 F g−1 (1.1 F cm−2) at 1.3 A g−1, remarkable rate performance and exceptional reversibility with a cycling efficiency of 96% after 3000 cycles at a high current density of 13 A g−1.

Notes

Acknowledgements

This work was supported by the National Major Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (B14003), National Natural Science Foundation of China (Nos. 51527802, 51232001 and 51372023), Beijing Municipal Science & Technology Commission, the Fundamental Research Funds for Central Universities.

Supplementary material

10853_2018_2251_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1981 kb)

References

  1. 1.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  2. 2.
    Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7:3519–3542CrossRefGoogle Scholar
  3. 3.
    Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nature Mater 4:366–377CrossRefGoogle Scholar
  4. 4.
    Li Y, Kang Z, Yan X, Cao S, Li M, Liu Y, Liu S, Sun Y, Zheng X, Zhang Y (2017) A facile method for the preparation of three-dimensional CNT sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors. J Mater Chem A 5:22559–22567CrossRefGoogle Scholar
  5. 5.
    Yousaf M, Shi H, Wang Y, Chen Y, Ma Z, Cao A, Naguib HE, Han R (2016) Novel pliable electrodes for flexible electrochemical energy storage devices: recent progress and challenges. Adv Energy Mater 6:1600490CrossRefGoogle Scholar
  6. 6.
    Sun F, Wu H, Liu X, Liu F, Zhou H, Gao J, Lu Y (2016) Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Res 9:3209–3221CrossRefGoogle Scholar
  7. 7.
    Li Y, Yan X, Zheng X, Si H, Li M, Liu Y, Sun Y, Jiang Y, Zhang Y (2016) Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy storage. J Mater Chem A 4:17704–17710CrossRefGoogle Scholar
  8. 8.
    Cho S, Kim M, Jang J (2015) Nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl Mater Interfaces 7:10213–10227CrossRefGoogle Scholar
  9. 9.
    Gittleson FS, Hwang D, Ryu WH, Hashmi SM, Hwang J, Goh T, Taylor AD (2015) Ultrathin nanotube/nanowire electrodes by spin-spray layer-by-layer assembly: a concept for transparent energy storage. ACS Nano 9:10005–10017CrossRefGoogle Scholar
  10. 10.
    Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188CrossRefGoogle Scholar
  11. 11.
    Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 79:577–583CrossRefGoogle Scholar
  12. 12.
    Wan H, Jiang J, Yu J, Xu K, Miao L, Zhang L, Chen H, Ruan Y (2013) NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15:7649–7651CrossRefGoogle Scholar
  13. 13.
    Guan Y, Yu L, Wang X, Song S, Lou X (2017) Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater 29:1605051CrossRefGoogle Scholar
  14. 14.
    Chen X, Chen D, Guo X, Wang R, Zhang H (2017) Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl Mater Interfaces 9:18774–18781CrossRefGoogle Scholar
  15. 15.
    Wen Y, Peng S, Wang Z, Hao J, Qin T, Lu S, Zhang J, He D, Fan X, Cao G (2017) Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. J Mater Chem A 5:7144–7152CrossRefGoogle Scholar
  16. 16.
    Wang J, Zhou R, Jin D, Xie K, Wei B (2016) Controlled synthesis of NiCo2S4 nanostructures on nickel foams for high-performance supercapacitors. Energy Storage Mater 2:1–7CrossRefGoogle Scholar
  17. 17.
    Chen H, Chen S, Shao H, Li C, Fan M, Chen D, Tian G, Shu K (2016) Hierarchical NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam for high-performance supercapacitors. Chem Asian J 11:248–255CrossRefGoogle Scholar
  18. 18.
    Chen H, Chen S, Fan M, Li C, Chen D, Tian G, Shu K (2015) Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J Mater Chem A 3:23653–23659CrossRefGoogle Scholar
  19. 19.
    Sun C, Yang J, Dai Z, Wang X, Zhang Y, Li L, Chen P, Huang W, Dong X (2016) Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res 9:1300–1309CrossRefGoogle Scholar
  20. 20.
    Shen L, Wang J, Xu G, Li H, Dou H, Zhang X (2014) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 26:1400977Google Scholar
  21. 21.
    Jiang Y, Zheng X, Yan X, Li Y, Zhao X, Zhang Y (2017) 3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures. J Colloid Interface Sci 493:42–50CrossRefGoogle Scholar
  22. 22.
    Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49:10178–10180CrossRefGoogle Scholar
  23. 23.
    Zhou Y, Wu Z, Jing M, Yang X, Song W, Ji X (2016) Band alignment engineering for high-energy density solid-state asymmetric supercapacitors with TiO2 insertion at the ZnO/Ni(OH)2 interface. J Mater Chem A 4:17981–17987CrossRefGoogle Scholar
  24. 24.
    Pu J, Cui F, Chu S, Wang T, Sheng E, Wang Z (2017) Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS Appl Mater Interfaces 9:7224–7231CrossRefGoogle Scholar
  25. 25.
    Gao Y, Lin Q, Zhong G, Fu Y, Ma X (2015) Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 273:584–590CrossRefGoogle Scholar
  26. 26.
    Zheng X, Yan X, Sun Y, Yu Y, Zhang G, Shen Y, Liang Q, Liao Q, Zhang Y (2016) Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. J Colloid Interface Sci 466:291–296CrossRefGoogle Scholar
  27. 27.
    Zheng X, Yan X, Sun Y, Li Y, Li M, Zhang G, Zhang Y (2016) Band alignment engineering for high-energy density solid-state asymmetric supercapacitors with TiO2 insertion at the ZnO/Ni(OH)2 interface. J Mater Chem A 4:17981–17987CrossRefGoogle Scholar
  28. 28.
    Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14:831–838CrossRefGoogle Scholar
  29. 29.
    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRefGoogle Scholar
  30. 30.
    Pu J, Cui F, Chu S, Wang T, Sheng E, Wang Z (2014) Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain Chem Eng 2:809–815CrossRefGoogle Scholar
  31. 31.
    Shen L, Yu L, Wu H, Yu X, Zhang X, Lou X (2015) Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun 6:6694CrossRefGoogle Scholar
  32. 32.
    Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 79:577–583CrossRefGoogle Scholar
  33. 33.
    Liu Y, Kang Z, Si H, Li P, Cao S, Liu S, Li Y, Zhang S, Zhang Z, Liao Q, Wang L, Zhang Y (2017) Cactus-like hierarchical nanorod-nanosheet mixed dimensional photoanode for efficient and stable water splitting. Nano Energy 35:189–198CrossRefGoogle Scholar
  34. 34.
    Xia C, Alshareef HN (2015) Self-templating scheme for the synthesis of nanostructured transition-metal chalcogenide electrodes for capacitive energy storage. Chem Mater 27:4661–4668CrossRefGoogle Scholar
  35. 35.
    Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Ma M, Yang J, Sun C, Su H, Huang W, Dong X (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale 6:9824–9830CrossRefGoogle Scholar
  37. 37.
    Wei C, Huang Y, Xue S, Zhang X, Chen X, Yan J, Yao W (2017) One-step hydrothermal synthesis of flaky attached hollow-sphere structure NiCo2S4 for electrochemical capacitor application. Chem Eng J 317:873–881CrossRefGoogle Scholar
  38. 38.
    Sui Y, Zhang Y, Hou P, Qi J, Wei F, He Y, Meng Q, Sun Z (2017) Three-dimensional NiCo2S4 nanosheets as high-performance electrodes materials for supercapacitors. J Mater Sci 52:7100–7109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhuo Kang
    • 1
  • Yong Li
    • 1
  • Yinsheng Yu
    • 1
  • Qingliang Liao
    • 1
  • Zheng Zhang
    • 1
  • Huijing Guo
    • 1
  • Suicai Zhang
    • 1
  • Jing Wu
    • 1
  • Haonan Si
    • 1
  • Xiaomei Zhang
    • 2
  • Yue Zhang
    • 1
    • 3
  1. 1.State Key Laboratory for Advanced Metals and Materials, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringTokyo Institute of TechnologyTokyoJapan
  3. 3.Beijing Municipal Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations