Journal of Materials Science

, Volume 53, Issue 12, pp 8933–8950 | Cite as

Synthesis of Rh nanoparticles in alcohols: magnetic and electrocatalytic properties

  • E. Ramírez-Meneses
  • K. Philippot
  • M. A. Domínguez-Crespo
  • M. Ibrahim
  • I. Betancourt
  • A. M. Torres-Huerta
  • A. Ezeta-Mejia
Chemical routes to materials
  • 48 Downloads

Abstract

The synthesis of Rh nanoparticles has been performed through an organometallic approach starting from the tris(allyl) rhodium complex, Rh(η3-C3H5)3, as precursor and using an alcohol as both a solvent and a stabilizer, under mild reaction conditions (room temperature; 3 bar H2). The influence of the alcohol used, among methanol, propanol or heptanol, on the morphological and structural characteristics as well as on the magnetic and electrocatalytic properties of the obtained Rh nanoparticles has been investigated. Assemblies of Rh nanoparticles of various sizes have been observed depending on the alkyl chain length of the alcohol used. A noticeable effect of the nanostructured character of these Rh nanoparticles is the appearance of a ferromagnetic ordering at room temperature due to a modified electronic structure. Magnetic moments per atom were determined as follows: 0.099, 0.073 and 0.036 µB for methanol, heptanol and propanol, respectively. The electrochemical evaluation of these Rh nanoparticles on the oxygen reduction reaction (ORR) showed that the electroactivity depends on the chain length of the alcohol; thus, Rh-heptanol system displayed the highest electroactivity for ORR.

Notes

Acknowledgements

The authors wish to acknowledge the financial support provided by CONACyT (Project 157613), Dirección de Investigación-Universidad Iberoamericana (UIA) F132021 project, Instituto Politécnico Nacional (SIP-20171186, SIP-20171148), CONACyT CB2015-252181 and C-2014-1905 projects and SNI-CONACyT. The authors would like to acknowledge the technical assistance provided by Luis M. Palacios-Romero. CNRS and University Paul Sabatier Toulouse are also thanked for financial support. The research was conducted in the framework of the “French-Mexican International Laboratory (LIA) LCMMC.”

References

  1. 1.
    Hasa B, Kalamaras E, Papaioannou EI, Vakros J, Sygello L, Katsaounis A (2015) Effect of TiO2 loading on Pt–Ru catalysts during alcohol electrooxidation. Electrochim Acta 179:578–587CrossRefGoogle Scholar
  2. 2.
    Hamnett A, Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology and applications. Wiley, ChichesterGoogle Scholar
  3. 3.
    Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Banham D, Ye S, Pei K, Ozaki JI, Kishimoto T, Imashir Y (2015) A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sour 285:334–348CrossRefGoogle Scholar
  5. 5.
    Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566CrossRefGoogle Scholar
  6. 6.
    Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions. Appl Catal A Gen 338:52–57CrossRefGoogle Scholar
  7. 7.
    Schmid G (2012) Nanoparticles: from theory to application, 2nd edn. Wiley-VCH Verlag, WeinheimGoogle Scholar
  8. 8.
    Chen LY, Fujita T, Ding Y, Chen MW (2010) A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing. Adv Funct Mater 20:2279–2285CrossRefGoogle Scholar
  9. 9.
    Tao AR, Habas S, Yang P (2008) Shape control of coloidal metal nanocrystals. Small 4:310–325CrossRefGoogle Scholar
  10. 10.
    Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRefGoogle Scholar
  11. 11.
    Davis SA, Breulmann M, Rhodes KH, Zhang B, Mann S (2001) Template-directed assembly using nanoparticle building blocks: a nanotectonic approach to organized materials. Chem Mater 13:3218–3226CrossRefGoogle Scholar
  12. 12.
    Li D, Cui Y, Wang K, He Q, Yan X, Li J (2007) Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv Funct Mater 17:3134–3140CrossRefGoogle Scholar
  13. 13.
    Cai B, Dianat A, Hübner R, Liu W, Wen D, Benad A, Sonntag L, Gemming T, Cuniberti G, Eychmüller A (2017) Multimetallic hierarchical aerogels: shape engineering of the building blocks for efficient electrocatalysis. Adv Mater 29:1605254CrossRefGoogle Scholar
  14. 14.
    Le Rhun V, Garnier E, Pronier S, Alonso-Vante N (2000) Electrocatalysis on nanoscale ruthenium-based material manufactured by carbonyl decomposition. Electrochem Commun 2:475–479CrossRefGoogle Scholar
  15. 15.
    Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H (2001) Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12. J Electroanal Chem 517:85–94CrossRefGoogle Scholar
  16. 16.
    Castellanos RH, Borja-Arco E, Altamirano-Gutiérrez A, Ortega-Borges R, Meas Y, Jiménez-Sandoval O (2005) Electrocatalytic properties of novel ruthenium-based compounds for the oxygen reduction reaction in 0.5 M H2SO4: effects of the synthesis atmosphere and temperature. J New Mater Electrochem Syst 8:69–75Google Scholar
  17. 17.
    Guyonnet Bilé E, Sassine R, Denicourt-Nowicki A, Launay F, Roucoux A (2011) New ammonium surfactant-stabilized rhodium(0) colloidal suspensions: influence of novel counter-anions on physico-chemical and catalytic properties. Dalton Trans 40:6524–6531CrossRefGoogle Scholar
  18. 18.
    Trang Thanh Chau N, Menuel S, Colombel-Rouen S, Guerrero M, Monflier E, Philippot K, Denicourt-Nowicki A, Roucoux A (2016) Active hydrogenation Rh nanocatalysts protected by new self-assembled supramolecular complexes of cyclodextrins and surfactants in water. RSC Adv 6:108125–108131CrossRefGoogle Scholar
  19. 19.
    Gacem N, Diao P (2013) Effect of solvent polarity on the assembly behavior pf PVP coated rhodium nanoparticles. Colloids Surf A Physicochem Eng Asp 417:32–38CrossRefGoogle Scholar
  20. 20.
    Long NV, Chien ND, Hirata H, Matsubara T, Ohtaki M, Nogami M (2011) Highly monodisperse cubic and octahedral rhodium nanocrystals: their evolutions from sharp polyhedrons into branched nanostructures and surface-enhanced Raman scattering. J Cryst Growth 320:78–89CrossRefGoogle Scholar
  21. 21.
    Marín-Almazo M, Ascencio JA, Pérez-Álvarez M, Gutiérrez-Wing C, José-Yacaman M (2005) Synthesis and characterization of rhodium nanoparticles using HREM techniques. Microchem J 81:133–138CrossRefGoogle Scholar
  22. 22.
    Suo Y, Hsing I-M (2011) Highly active rhodium/carbon nanocatalysts for ethanol oxidation in alkaline medium. J Power Sour 196:7945–7950CrossRefGoogle Scholar
  23. 23.
    Durap F, Zahmakiran M, Özkar S (2009) Water soluble laurate-stabilized rhodium(0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane. Appl Catal A 369:53–59CrossRefGoogle Scholar
  24. 24.
    Karschin A, Katsounaros I, Klemm SO, Meier JC, Mayrhofer KJJ (2012) Degradation of polycrystalline rhodium and rhodium nanoparticles. Electrochim Acta 70:355–359CrossRefGoogle Scholar
  25. 25.
    Tzorbatzoglou F, Brouzgou A, Tsiakaras P (2015) Electrocatalytic activity of Vulcan-XC-72 supported Pd, Rh and PdxRhy toward HOR and ORR. Appl Catal B 174–175:203–211CrossRefGoogle Scholar
  26. 26.
    Lin C, Wu G, Li H, Geng Y, Xie G, Yang J, Liu B, Jin J (2017) Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation. Nanoscale 9:1834–1839CrossRefGoogle Scholar
  27. 27.
    Yao L, Zhao J, Lee J-M (2017) Small size Rh nanoparticles in micelle nanostructure by ionic liquid/CTAB for acceptorless dehydrogenation of alcohols only in pure water. ACS Sustain Chem Eng 5:2056–2060CrossRefGoogle Scholar
  28. 28.
    Hoefelmeyer JD, Liu H, Somorjai GA, Tilley TD (2007) Reverse micelle synthesis of rhodium nanoparticles. J Colloid Interface Sci 309:86–93CrossRefGoogle Scholar
  29. 29.
    Xie S, Zhang H, Lu N, Jin M, Wang J, Kim MJ, Xie Z, Xia Y (2013) Synthesis of rhodium concave tetrahedrons by collectively manipulating the reduction kinetics, facet-selective capping, and surface diffusion. Nano Lett 13:6262–6268CrossRefGoogle Scholar
  30. 30.
    Zahmakiran M, Özcar S (2009) Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane. Inorg Chem 48:8955–8964CrossRefGoogle Scholar
  31. 31.
    Ayvali T, Zahmakiran M, Özcar S (2011) One-pot synthesis of colloidally robust rhodium(0) nanoparticles and their catalytic activity in the dehydrogenation of ammonia-borane for chemical hydrogen storage. Dalton Trans 40:3584–3591CrossRefGoogle Scholar
  32. 32.
    Li Y, Li N, Yanagisawa K, Ding X, Li X, Wei Y, Yan X (2013) Spherical Rh17S15@C and Rh@C core-shell nanocomposites: synthesis, growth mechanism and methanol tolerance in oxygen reduction reaction. Chem Eng J 228:45–53CrossRefGoogle Scholar
  33. 33.
    Uribe-Godínez J, García-Montalvo V, Jiménez-Sandoval O (2013) Development of Ir-based and Rh-based catalyst electrodes for PEM fuel cell applications. Int J Hydrog Energy 38:7680–7683CrossRefGoogle Scholar
  34. 34.
    Khosravian H, Liang Z, Uhl A, Trenary M, Meyer R (2012) Controlled Synthesis of Rh nanoparticles on TiO2(110) via Rh(CO)2(acac). J Phys Chem C 116:11987–11993CrossRefGoogle Scholar
  35. 35.
    Axet MR, Castillón S, Claver C, Philippot K, Lecante P, Chaudret B (2008) Chiral diphosphite-modified rhodium(0) nanoparticles: catalyst reservoir for styrene hydroformylation. Eur J Inorg Chem 22:3460–3466CrossRefGoogle Scholar
  36. 36.
    Ramírez-Meneses E, Philippot K, Chaudret B (2015) Influencia del medio de reacción en la estabilización de nanoestructuras de Rodio. Ingeniería Investigación y Tecnología 16:225–237CrossRefGoogle Scholar
  37. 37.
    Ibrahim M, Poreddy R, Philippot K, Riisager A, Garcia-Suarez EJ (2016) Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles. Dalton Trans 45:19368–19373CrossRefGoogle Scholar
  38. 38.
    Zhang J, Ibrahim M, Collière V, Asakura H, Tanaka T, Teramura K, Philippot K, Yang N (2016) Rh nanoparticles with NiOx surface decoration for selective hydrogenolysis of C–O bond over arene hydrogenation. J Mol Catal A Chem 422:188–197CrossRefGoogle Scholar
  39. 39.
    Ibrahim M, Garcia MAS, Vono LLR, Guerrero M, Lecante P, Rossi LM, Philippot K (2016) Polymer versus phosphine stabilized Rh nanoparticles as components of supported catalysts: implication in the hydrogenation of cyclohexene model molecule. Dalton Trans 45:17782–17791CrossRefGoogle Scholar
  40. 40.
    Karahan S, Zahmakiran M, Özkar S (2012) A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane. Chem Commun 48:1180–1182CrossRefGoogle Scholar
  41. 41.
    Domínguez-Crespo MA, Ramírez-Meneses E, Montiel-Palma V, Torres Huerta AM, Dorantes Rosales H (2009) Synthesis and electrochemical characterization of stabilized nickel nanoparticles. Int J Hydrog Energy 34:1664–1676CrossRefGoogle Scholar
  42. 42.
    Ramírez-Meneses E, Montiel-Palma V, Domínguez-Crespo MA, Izaguirre-López MG, Palacios-González E, Dorantes-Rosales H (2015) Shape-and size-controlled Ag nanoparticles stabilized by in situ generated secondary amines. J Alloys Compd 643:s51–s61CrossRefGoogle Scholar
  43. 43.
    Ramírez-Meneses E, Domínguez-Crespo MA, Montiel-Palma V, Chávez-Herrera VH, Gómez E, Hernández-Tapia G (2009) Electrochemical characterization of platinum nanoparticles stabilized by amines. J Alloys Compd 483:573–577CrossRefGoogle Scholar
  44. 44.
    Domínguez-Crespo MA, Ramírez-Meneses E, Torres-Huerta AM, Dorantes-Rosales H (2011) Effect of amine ligands on stabilization of Pt nanoparticles as electrode materials for electro-oxidation of methanol. J New Mater Electrochem Syst 14:1–10Google Scholar
  45. 45.
    Domínguez-Crespo MA, Ramírez-Meneses E, Torres-Huerta AM, Garibay-Febles V, Philippot K (2012) Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni–Pt nanoparticles obtained by an organometallic approach. Int J Hydrog Energy 37:4798–4811CrossRefGoogle Scholar
  46. 46.
    Manzo-Robledo A, Costa Natália JS, Philippot K, Rossi Liane M, Ramírez-Meneses E, Guerrero-Ortega LPA, Ezquerra-Quiroga S (2015) Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon Vulcan. J Nanoparticle Res 17:474CrossRefGoogle Scholar
  47. 47.
    Ramirez-Meneses E (2004) Synthèse et caractérisation de nanoparticules métalliques à base de rhodium, platine et palladium, stabilisées par des ligands. PhD thesis, Université Paul Sabatier-ToulouseGoogle Scholar
  48. 48.
    Hermann WA, Brauer G (2000) Synthetic methods of organometallic and inorganic chemistry (Hermann/Brauer): transition metals. Thieme Medical Publisher, StuttgartGoogle Scholar
  49. 49.
    Ibrahim M (2016) Rhodium based mono-and bi-metallic nanoparticles: synthesis, characterization and application in catalysis. PhD thesis, Université Paul Sabatier-ToulouseGoogle Scholar
  50. 50.
    Coelho AA (2000) Whole-profile structure solution from powder diffraction data using simulated annealing. J Appl Cryst 33:899–908CrossRefGoogle Scholar
  51. 51.
    Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci 39:1–24CrossRefGoogle Scholar
  52. 52.
    Durón S, Rivera-Noriega R, Nkeng P, Poillerat G, Solorza-Feria O (2004) Kinetic study of oxygen reduction on nanoparticles of ruthenium synthesized by pyrolysis of Ru3(CO)12. J Electroanal 566(2004):281–289CrossRefGoogle Scholar
  53. 53.
    Pleskov YV, Filinovskii VY (1976) The rotating disk electrode. Plenum Press, New YorkCrossRefGoogle Scholar
  54. 54.
    Hsueh K-L, Gonzalez ER, Srinivasan S (1983) Electrolyte effects on oxygen reduction kinetics at platinum: a rotating ring-disc electrode analysis. Electrochim Acta 28(1983):691–697CrossRefGoogle Scholar
  55. 55.
    Baysinger G, Berger LI, Goldberg RN, Kehiaian HV, Kuchitsu K, Rosenblatt G, Roth DL, Zwillinger D (2005) CRC handbook of chemistry and physics, 74th edn. CRC Press, Boca Raton FLGoogle Scholar
  56. 56.
    Liu Y, Tang N, Wan X, Feng Q, Li M, Xu Q, Liu F, Du Y (2013) Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci Rep 3:2566CrossRefGoogle Scholar
  57. 57.
    Vidoni O, Philippot K, Amiens C, Chaudret B, Balmes O, Malm J-O, Bovin J-O, Senocq F, Casanove M-J (1999) Novel, spongelike ruthenium particles of controllable size stabilized only by organic solvents. Angew Chem Int Ed 38:3736–3738CrossRefGoogle Scholar
  58. 58.
    Pelzer K, Vidoni O, Philippot K, Chaudret B, Collière V (2003) Organometallic synthesis of size-controlled polycrystalline ruthenium nanoparticles in the presence of alcohols. Adv Funct Mater 13:118–126CrossRefGoogle Scholar
  59. 59.
    Pelzer K, Philippot K, Chaudret B (2003) Synthesis of monodisperse heptanol stabilized ruthenium nanoparticles. Evidence for the presence of surface hydrogen. Z Phys Chem 217:1539–1548CrossRefGoogle Scholar
  60. 60.
    Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louër D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) Size-strain line-broadening analysis of the ceria round-robin sample. J Appl Cryst 37:911–924CrossRefGoogle Scholar
  61. 61.
    Balzar D (1999) International union of crystallography monographs on crystallography, vol 10. Oxford University Press, New YorkGoogle Scholar
  62. 62.
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, functionalization and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  63. 63.
    Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem 21:16819–16845CrossRefGoogle Scholar
  64. 64.
    Getzlaff M (2008) Fundamentals of magnetism. Springer, BerlinGoogle Scholar
  65. 65.
    Sampedro B, Crespo P, Hernando A, Litrán R, Sánchez López JC, López Cartes C, Fernandez A, Ramírez J, González Calbet J, Vallet M (2003) Ferromagnetism in fcc twinned 2.4 nm Size Pd nanoparticles. Phys Rev Lett 91:237203CrossRefGoogle Scholar
  66. 66.
    Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63(1991):711–734CrossRefGoogle Scholar
  67. 67.
    Łukaszewski M, Soszko M, Czerwiński A (2016) Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int J Electrochem Sci 11:4442–4469CrossRefGoogle Scholar
  68. 68.
    Chi Linh D, Thy San P, Ngoc Phong N, Viet Quan T (2013) Properties of Pt/C nanoparticle catalysts synthesized by electroless deposition for proton exchange membrane fuel cell. Adv Nat Sci Nanosci Nanotechnol 4:035011CrossRefGoogle Scholar
  69. 69.
    Clavilier J, Wasberg M, Petit M, Klein LH (1994) Detailed analysis of the voltammetry of Rh(111) in perchloric acid solution. J Electroanal Chem 374:123–131CrossRefGoogle Scholar
  70. 70.
    Langkau T, Baltruschat H (1998) The rate of anion and hydrogen adsorption on Pt(111) and Rh(111). Electrochim Acta 44:909–918CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ingeniería Química, Industrial y de AlimentosUniversidad IberoamericanaCiudad de MéxicoMexico
  2. 2.LCC (Laboratoire de Chimie de Coordination), CNRSToulouse Cedex 4France
  3. 3.Université de Toulouse, UPS, INPTToulouse Cedex 4France
  4. 4.Instituto Politécnico NacionalCentro de Investigación en Ciencia Aplicada y Tecnología Avanzada - Unidad AltamiraAltamiraMexico
  5. 5.Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  6. 6.Instituto Politécnico NacionalEscuela Superior de Ingeniería Química e Industrias ExtractivasZacatenco, Ciudad de MéxicoMexico

Personalised recommendations