Advertisement

Sensing properties of barium titanate nanoceramics tailored by doping and microstructure control

  • M. M. Vijatović PetrovićEmail author
  • A. Radojkovic
  • J. D. Bobić
  • A. Dzunuzovic
  • N. Ilic
  • B. D. Stojanović
Ceramics
  • 30 Downloads

Abstract

BaTiO3 nanopowders doped with La and co-doped with La/Mn were prepared by auto-combustion and Pechini methods, respectively. The influence of the synthesis methods, dopants and sintering temperature on the BaTiO3 structure and its potential to be used as humidity and/or H2 gas sensor were studied. The optimization of all process parameters was performed to obtain adequate microstructure for the development of good sensor properties. The difference in the grain size between the La-doped and La/Mn co-doped samples and the formation of different types of defect structures in these ceramics were found to be significant for the desired electrical and ferroelectric properties. The La-doped ceramics with a pseudo-cubic structure showed the highest potential for gas sensors. The materials obtained by the Pechini method had a tetragonal structure and showed the best response, i.e., the change in electrical resistivity by four orders of magnitude in the humid atmosphere.

Notes

Acknowledgements

The authors gratefully acknowledge the Ministry of Education, Science and Technological Development of Republic of Serbia for the financial support of this work (Projects III45021, III45007). The authors are thankful to Dr Zeljko Despotovic for experimental support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Buscaglia MT, Buscaglia V, Viviani M, Nanni P, Hanuskova M (2000) Influence of foreign ions on the crystal structure of BaTiO3. J Eur Ceram Soc 20:1997–2007CrossRefGoogle Scholar
  2. 2.
    Moulson AJ, Herbert JM (2003) Electroceramics, 2nd edn. Wiley, LondonCrossRefGoogle Scholar
  3. 3.
    Vijatović Petrović MM, Bobić JD, Ramoška T, Banys J, Stojanović BD (2011) Electrical properties of lanthanum doped barium titanate ceramics. Mater Charact 62:1000–1006CrossRefGoogle Scholar
  4. 4.
    Vijatovic Petrovic MM, Bobic JD, Ramoska T, Banys J, Stojanovic BD (2011) Antimony doping effect on barium titanate structure and electrical properties. Ceram Int 37:2669–2677CrossRefGoogle Scholar
  5. 5.
    Kumar P, Singh S, Spah M, Juneja JK, Prekash C, Raina KK (2010) Synthesis and dielectric properties of substituted barium titanate ceramics. J Alloy Compd 489:59–63CrossRefGoogle Scholar
  6. 6.
    Guo HZ, Mudryk Y, Ahmad MI, Pang XC, Zhao L, Akinc M, Pecharsky VK, Bowler N, Lin ZQ, Tan X (2012) Structure evolution and dielectric behavior of polystyrene-capped barium titanate nanoparticles. J Mater Chem 22:23944–23951Google Scholar
  7. 7.
    Vijatovic Petrovic MM, Bobic JD (2018) Perovskite and Aurivillius: types of ferroelectric metal oxides. In: Stojanovic BD (ed) Magnetic, ferroelectric, and multiferroic metal oxides. Elsevier Publisher, Amsterdam, pp 35–49CrossRefGoogle Scholar
  8. 8.
    Brzozowski E, Castro MS (2005) Grain growth control in Nb-doped BaTiO3. J Mater Process Technol 168:464–470CrossRefGoogle Scholar
  9. 9.
    Zhao C, Wu B, Cheng Thong H, Wu J (2018) Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics. J Eur Ceram Soc.  https://doi.org/10.1016/j.jeurceramsoc.2018.08.004 Google Scholar
  10. 10.
    Vijatovic Petrovic MM, Bobic JD, Grigalaitis R, Stojanovic BD, Banys J (2013) La-doped and La/Mn-co-doped barium titanate ceramics. Acta Phys Pol A 124:155–160CrossRefGoogle Scholar
  11. 11.
    Chatterjee S, Stojanovic B, Maiti H (2003) Effect of additives and powder preparation techniques on PTCR properties of barium titanate. Mater Chem Phys 78:702–710CrossRefGoogle Scholar
  12. 12.
    Farahani H, Wagiran R, Nizar Hamidon M (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939CrossRefGoogle Scholar
  13. 13.
    Chen Z, Lu C (2005) Humidity sensors: a review of materials and methods. Sensor Lett 3:274–295CrossRefGoogle Scholar
  14. 14.
    Viviani M, Buscaglia MT, Buscaglia V, Leoni M, Nanni P (2001) Barium perovskites as humidity sensing materials. J Eur Ceram Soc 21:1981–1984CrossRefGoogle Scholar
  15. 15.
    Wang J, Wang X, Wang X (2005) Study on dielectric properties of humidity sensing nanometer materials. Sensors Actuators B 108:445–449CrossRefGoogle Scholar
  16. 16.
    Vijatovic MM, Stojanovic BD, Bobic JD, Ramoska T, Bowen P (2010) Properties of lanthanum doped BaTiO3 produced from nanopowders. Ceram Int 36:1817–1824CrossRefGoogle Scholar
  17. 17.
    Dzunuzovic AS, Vijatovic Petrovic MM, Stojadinovic BS, Ilic NI, Bobic JD, Foschini CR, Zaghete MA, Stojanovic BD (2015) Multiferroic (NiZn)Fe2O4–BaTiO3 composites prepared from nanopowders by auto-combustion method. Ceram Int 41:13189–13200CrossRefGoogle Scholar
  18. 18.
    Dwivedi RK, Parkash O, Kumar D, Srivastava KK, Singh P (2007) Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramics. J Mater Sci 42:5490–5496 10.1007/s10853-006-0985-8 CrossRefGoogle Scholar
  19. 19.
    Vijatovic Petrovic MM, Bobic JD, Ursic H, Banys J, Stojanovic BD (2013) The electrical properties of chemically obtained barium titanate improved by attrition milling. J Sol Gel Sci Technol 67:267–272CrossRefGoogle Scholar
  20. 20.
    Li T, Li L, Zhao J, Gui Z (2000) Modulation effect of Mn2+ on dielectric properties of BaTiO3 -based X7R materials. Mater Lett 44:1–5CrossRefGoogle Scholar
  21. 21.
    Cai W, Fu C, Lin Z, Deng X (2011) Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceram Int 37:3643–3650CrossRefGoogle Scholar
  22. 22.
    Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H (2015) Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci Rep 5:9953CrossRefGoogle Scholar
  23. 23.
    Buatip N, Promsawat N, Pisitpipathsin N, Namsar O, Pawasri P, Ounsung K, Phabsimma K, Rattanachan ST, Janphuang P, Projprapai S (2018) Investigation on electrical properties of BCZT ferroelectric ceramics prepared at various sintering conditions. Integr Ferroelectr 187:45–52CrossRefGoogle Scholar
  24. 24.
    Godara S, Kumar B (2015) Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 nanoparticles. Ceram Int 41:6912–6919CrossRefGoogle Scholar
  25. 25.
    Chien Chiu F. (2014) A review on conduction mechanisms in dielectric films, advances in materials science and engineering, Hindawi Publishing Corporation, 578168Google Scholar
  26. 26.
    Sharma S, Shamim K, Ranjan A, Raib R, Kumari P, Sinha S (2015) Impedance and modulus spectroscopy characterization of lead free barium titanate ferroelectric ceramics. Ceram Int 41:7713–7722CrossRefGoogle Scholar
  27. 27.
    Moriwake H, Fisher C, Kuwabara A (2010) First-principles calculations of electronic structure and solution energies of Mn-doped BaTiO3. Jpn J Appl Phys 49:09MC01CrossRefGoogle Scholar
  28. 28.
    Chikada S, Kubota T, Honda A, Higai S, Motoyoshi Y, Wada N, Shiratsuyu K (2016) Interactions between Mn dopant and oxygen vacancy for insulation performance of BaTiO3. J Appl Phys 120:142122CrossRefGoogle Scholar
  29. 29.
    Thakur OP, Feteira A, Kundys B, Sinclair DC (2007) Influence of attrition milling on the electrical properties of undoped-BaTiO3. J Eur Ceram Soc 27:2577–2589CrossRefGoogle Scholar
  30. 30.
    Devi S, Jha AK (2009) Phase transition and electrical characteristics of tungsten substituted barium titanate. Phys B 404:4290–4294CrossRefGoogle Scholar
  31. 31.
    Kim Y, Ha SC, Kim K, Yang H, Choi SY, Kim YT, Park JT, Lee CH, Choi J, Paek J, Lee K (2005) Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl Phys Lett 86:213105CrossRefGoogle Scholar
  32. 32.
    Farahani H, Wagiran R, Nizar Hamidon M (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939CrossRefGoogle Scholar
  33. 33.
    Yuasa M, Nagano T, Tachibana N, Kida T, Shimanoe K (2013) Catalytic combustion-type hydrogen sensor using BaTiO3-based PTC thermistor. J Am Ceram Soc 96:1789–1794CrossRefGoogle Scholar
  34. 34.
    Caballero AC, Villegas M, Fernandez JF, Viviani M, Buscaglia MT, Leoni M (1999) Effect of humidity on the electrical response of porous BaTiO3 ceramics. J Mater Sci Lett 18:1297–1299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Multidisciplinary ResearchBelgrade UniversityBelgradeSerbia

Personalised recommendations