Investigation of ordered mesoporous carbon@MnO core–shell nanospheres as anode material for lithium-ion batteries
- 22 Downloads
Abstract
Here, we present a design of core–shell structured carbon@MnO composite nanospheres and investigate its electrochemical performance as an anode material for lithium-ion batteries. The core–shell carbon@MnO composite nanospheres are obtained from the intermediate product of carbon@MnO2 nanospheres by coating a MnO2 layer over the surface of the mesoporous carbon cores, followed by thermal treatment in an inert atmosphere. The morphology and crystal phase of the obtained nanospheres are examined, and the electrochemical properties as a lithium-ion battery anode material are studied. The results demonstrate that the ordered mesoporous carbon@MnO electrode shows remarkable enhancements in lithium storage capacity, rate capability and cycling stability, delivering an average capacity of 572 mAh g−1 at 500 mA g−1 over 1000 charge/discharge cycles. The morphology and phase of the core–shell carbon@MnO electrode material after extended cycling are examined by transmission electron microscopy and X-ray diffraction, which indicate the nanocrystalline rather than amorphous property of the cycled electrode. As MnO is a conversion-type electrode material, the potential polarization of the carbon@MnO composite electrode is also investigated, which exhibits a unique evolution as cycling proceeds.
Notes
Acknowledgements
The author gratefully acknowledges Professor Paul V. Braun of Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign (UIUC), for his useful advice and the use of his laboratory for this research wok. The author also acknowledges Li Zhao for his assistance in the acquisition of XRD patterns. The author also acknowledges Chinese Scholarship Council during her visit to UIUC, and partial support from National Natural Science Foundation of China (21503036). The research was carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois at Urbana–Champaign.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Li J, Li Z, Ning F et al (2018) ACS Omega 3:1675. https://doi.org/10.1021/acsomega.7b01832 CrossRefGoogle Scholar
- 2.Wang D, Yu Y, He H, Wang J, Zhou W, Abruña HD (2015) ACS Nano 9:1775. https://doi.org/10.1021/nn506624g CrossRefGoogle Scholar
- 3.Ding C, Jiang X, Huang X et al (2018) Mater Res Bull 97:142. https://doi.org/10.1016/j.materresbull.2017.08.058 CrossRefGoogle Scholar
- 4.Xia T, Xu X, Wang J et al (2015) Electrochim Acta 160:114. https://doi.org/10.1016/j.electacta.2015.02.017 CrossRefGoogle Scholar
- 5.Huang Y, Xu Z, Mai J et al (2017) Nano Energy 41:426. https://doi.org/10.1016/j.nanoen.2017.10.001 CrossRefGoogle Scholar
- 6.Bai Z, Ju Z, Guo C, Qian Y, Tang B, Xiong S (2014) Nanoscale 6:3268. https://doi.org/10.1039/c3nr05676g CrossRefGoogle Scholar
- 7.Gu L, Xie W, Bai S et al (2016) Appl Surf Sci 368:298. https://doi.org/10.1016/j.apsusc.2016.01.270 CrossRefGoogle Scholar
- 8.Jadhav HS, Thorat GM, Mun J, Seo JG (2016) J Power Sources 302:13. https://doi.org/10.1016/j.jpowsour.2015.10.044 CrossRefGoogle Scholar
- 9.Li L, Raji A-RO, Tour JM (2013) Adv Mater 25:6298. https://doi.org/10.1002/adma.201302915 CrossRefGoogle Scholar
- 10.Wei Y, Zi Z, Chen B et al (2018) J Alloys Compd 756:93. https://doi.org/10.1016/j.jallcom.2018.04.331 CrossRefGoogle Scholar
- 11.Chen J, Wang Y, He X et al (2014) Electrochim Acta 142:152. https://doi.org/10.1016/j.electacta.2014.07.089 CrossRefGoogle Scholar
- 12.Jian G, Xu Y, Lai L-C, Wang C, Zachariah MR (2014) J Mater Chem A 2:4627CrossRefGoogle Scholar
- 13.Shi S, Deng S, Zhang M, Zhao M, Yang G (2017) Electrochim Acta 224:285. https://doi.org/10.1016/j.electacta.2016.12.080 CrossRefGoogle Scholar
- 14.Gu X, Yue J, Li L, Xue H, Yang J, Zhao X (2015) Electrochim Acta 184:250. https://doi.org/10.1016/j.electacta.2015.10.037 CrossRefGoogle Scholar
- 15.Su H, Xu Y-F, Feng S-C et al (2015) ACS Appl Mater Interfaces 7:8488. https://doi.org/10.1021/am509198k CrossRefGoogle Scholar
- 16.Wang J, Liu Y, Wang S, Guo X, Liu Y (2014) J Mater Chem A 2:1224. https://doi.org/10.1039/C3TA14135G CrossRefGoogle Scholar
- 17.Zhang R, Liu J, Guo H, Tong X (2015) Mater Lett 139:55. https://doi.org/10.1016/j.matlet.2014.10.039 CrossRefGoogle Scholar
- 18.Kim J, Hong S-A, Yoo J (2015) Chem Eng J 266:179. https://doi.org/10.1016/j.cej.2014.12.084 CrossRefGoogle Scholar
- 19.Huang XH, Guo RQ, Wu JB, Zhang P (2014) Mater Lett 122:82. https://doi.org/10.1016/j.matlet.2014.02.012 CrossRefGoogle Scholar
- 20.Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nature 407:496CrossRefGoogle Scholar
- 21.Shao J, Zhou H, Zhu M, Feng J, Yuan A (2018) J Alloys Compd 768:1049. https://doi.org/10.1016/j.jallcom.2018.07.290 CrossRefGoogle Scholar
- 22.Sheng L, Liang S, Wei T et al (2018) Energy Storage Mater 12:94. https://doi.org/10.1016/j.ensm.2017.11.014 CrossRefGoogle Scholar
- 23.Zhao Y, Huang G, Li Y et al (2018) J Mater Chem A 6:7227. https://doi.org/10.1039/C8TA00940F CrossRefGoogle Scholar
- 24.Fan Z, Liang J, Yu W et al (2015) Nano Energy 16:152. https://doi.org/10.1016/j.nanoen.2015.06.009 CrossRefGoogle Scholar
- 25.Xiao S, Pan D, Wang L et al (2016) Nanoscale 8:19343. https://doi.org/10.1039/C6NR07802H CrossRefGoogle Scholar
- 26.Dou Y, Xu J, Ruan B et al (2016) Adv Energy Mater 6:1501835. https://doi.org/10.1002/aenm.201501835 CrossRefGoogle Scholar
- 27.Gu D, Li W, Wang F et al (2015) Angew Chem Int Ed 54:7060. https://doi.org/10.1002/anie.201501475 CrossRefGoogle Scholar
- 28.Zhou G, Wang D-W, Li F et al (2010) Chem Mater 22:5306. https://doi.org/10.1021/cm101532x CrossRefGoogle Scholar
- 29.Xiao Y, Wang X, Wang W, Zhao D, Cao M (2014) ACS Appl Mater Interfaces 6:2051. https://doi.org/10.1021/am405142p CrossRefGoogle Scholar
- 30.Li M, Xue J (2012) J Colloid Interface Sci 377:169. https://doi.org/10.1016/j.jcis.2012.03.085 CrossRefGoogle Scholar
- 31.Gao T, Fjellvåg H, Norby P (2009) Anal Chim Acta 648:235. https://doi.org/10.1016/j.aca.2009.06.059 CrossRefGoogle Scholar
- 32.Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han Y-F (2008) Catal Today 131:477. https://doi.org/10.1016/j.cattod.2007.10.061 CrossRefGoogle Scholar
- 33.Kim S-W, Lee H-W, Muralidharan P et al (2011) Nano Res 4:505. https://doi.org/10.1007/s12274-011-0106-0 CrossRefGoogle Scholar
- 34.Wang GX, Chen Y, Konstantinov K, Lindsay M, Liu HK, Dou SX (2002) J Power Sources 109:142. https://doi.org/10.1016/S0378-7753(02)00052-6 CrossRefGoogle Scholar
- 35.Deng Y, Li Z, Shi Z, Xu H, Peng F, Chen G (2012) RSC Adv 2:4645. https://doi.org/10.1039/C2RA20062G CrossRefGoogle Scholar
- 36.Taberna P-L, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) Nat Mater 5:567CrossRefGoogle Scholar
- 37.Malini R, Uma U, Sheela T, Ganesan M, Renganathan NG (2009) Ionics 15:301. https://doi.org/10.1007/s11581-008-0236-x CrossRefGoogle Scholar
- 38.Mai YJ, Shi SJ, Zhang D, Lu Y, Gu CD, Tu JP (2012) J Power Sources 204:155. https://doi.org/10.1016/j.jpowsour.2011.12.038 CrossRefGoogle Scholar