Advertisement

Journal of Materials Science

, Volume 54, Issue 8, pp 6027–6037 | Cite as

Ferromagnetism, structure transitions, and strain coupling of magnetoelastic double perovskite La2CoMnO6

  • Dexin YangEmail author
  • Tao Yang
  • Yulong Chen
  • Yu Liang
  • Yan’gai LiuEmail author
Ceramics
  • 171 Downloads

Abstract

Double perovskite La2CoMnO6 is an attractive spintronics with magnetoelectric, magnetodielectric, and magnetoresistive effects, which are related, at least in part, to combined structural and magnetic instabilities. To explore its magnetoelastic coupling behaviour, a conventional analysis of lattice parameter data in terms of spontaneous strain shows that the ferromagnetic ordering process is accompanied by significant volume (eaM) and shear (etM) strains. The DC and AC magnetic data reveal the antisite defects with antiphase regions, and the ferromagnetic transition is at ~ 230 K with a small antiferromagnetic ordering at about 170 K. In addition, the Rietveld refinement of the in situ variation X-ray diffraction from 120 to 1400 K, scanning electron microscopy, and differential scanning calorimetry were used to confirm the crystal structure, microstructure, magnetic, and structural anomalies of the sample synthesised in pure oxygen atmosphere. This study, and in particular the strain analysis, of La2CoMnO6 will facilitate its potential application in the field of spin electronics and thin-film engineering.

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 51702289) and the China Postdoctoral Science Foundation (Grant No. 2016M601963). T. Yang would like to acknowledge financial support from Engineering Research Center of non-metallic minerals of Zhejiang Province, Key Laboratory of Clay Minerals, Ministry of Land and Resources.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vasala S, Karppinen M (2015) A2B′B″O6 perovskites: a review, PROG. Solid State CH 43(1–2):1–36Google Scholar
  2. 2.
    Volonakis G, Haghighirad AA, Milot RL, Sio WH, Filip MR, Wenger B, Johnston MB, Herz LM, Snaith HJ, Giustino F (2017) Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J Phys Chem Lett 8(4):772–778CrossRefGoogle Scholar
  3. 3.
    Corredor LT, Aslan-Cansever G, Sturza M, Manna K, Maljuk A, Gass S, Dey T, Wolter AUB, Kataeva O, Zimmermann A, Geyer M, Blum CGF, Wurmehl S, Büchner B (2017) Iridium double perovskite Sr2YIrO6: a combined structural and specific heat study. Phys Rev B 95(6):064418CrossRefGoogle Scholar
  4. 4.
    Du K, Meng W, Wang X, Yan Y, Mitzi DB (2017) Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew Chem Int Ed 56(28):8158–8162CrossRefGoogle Scholar
  5. 5.
    Kumar N, Khurana G, Katiyar RS, Gaur A, Kotnala RK (2017) Double perovskite Sr2FeMoO6: a potential candidate for room temperature magnetoresistance device applications. In: Asfour A (ed) Magnetic sensors—development trends and applications. InTech, Rijeka, p Ch. 05Google Scholar
  6. 6.
    Yang D, Zhao P, Huang S, Yang T, Huo D (2019) Ferrimagnetism, resistivity, and magnetic exchange interactions in double perovskite La2CrMnO6. Results Phys 12:344–348CrossRefGoogle Scholar
  7. 7.
    Galceran R, López-Mir L, Bozzo B, Cisneros-Fernández J, Santiso J, Balcells L, Frontera C, Martínez B (2016) Strain-induced perpendicular magnetic anisotropy in La2CoMnO6-ε thin films and its dependence on film thickness. Phys Rev B 93(14):144417CrossRefGoogle Scholar
  8. 8.
    Yuan N, Liu X, Meng F, Zhou D, Meng J (2015) First-principles study of La2CoMnO6: a promising cathode material for intermediate-temperature solid oxide fuel cells due to intrinsic Co-Mn cation disorder. Ionics 21(6):1675–1681CrossRefGoogle Scholar
  9. 9.
    Barón-González AJ, Frontera C, García-Muñoz JL, Rivas-Murias B, Blasco J (2011) Effect of cation disorder on structural, magnetic and dielectric properties of La2MnCoO6 double perovskite. J Phys Condens Matter 23(49):496003CrossRefGoogle Scholar
  10. 10.
    Dass RI, Goodenough JB (2003) Multiple magnetic phases of La2CoMnO6-δ (0<~δ<~005). Phys Rev B 67(1):014401CrossRefGoogle Scholar
  11. 11.
    Yi QL, Xiang MC (2011) Dielectric, ferromagnetic characteristics, and room-temperature magnetodielectric effects in double perovskite La2CoMnO6 ceramics. J Am Ceram Soc 94(3):782–787CrossRefGoogle Scholar
  12. 12.
    Sayed FN, Achary SN, Deshpande SK, Rajeswari B, Kadam RM, Dwebedi S, Nigam AK, Tyagi AK (2014) Role of annealing atmosphere on structure, dielectric and magnetic properties of La2CoMnO6 and La2MgMnO6. Z Anorg Allg Chem 640(10):1907–1921CrossRefGoogle Scholar
  13. 13.
    Li Q-H, Li N, Hu J-Z, Han Q, Ma Q-S, Ge L, Xiao B, Xu M-X (2014) The effect of Ca-substitution in La-site on the magnetic properties of La2CoMnO6. J Appl Phys 116(3):033905CrossRefGoogle Scholar
  14. 14.
    Singh MP, Truong KD, Fournier P (2007) Magnetodielectric effect in double perovskite La2CoMnO6 thin films. Appl Phys Lett 91(4):042504CrossRefGoogle Scholar
  15. 15.
    Barón-González AJ, Frontera C, García-Muñoz JL, Roqueta J, Santiso J (2010) Magnetic, structural properties and B-site order of two epitaxial La2CoMnO6 films with perpendicular out-of-plane orientation. J Phys Conf Ser 200(9):092002CrossRefGoogle Scholar
  16. 16.
    Truong KD, Laverdière J, Singh MP, Jandl S, Fournier P (2007) Impact of Co/Mn cation ordering on phonon anomalies in La2CoMnO6 double perovskites: Raman spectroscopy. Phys Rev B 76(13):132413CrossRefGoogle Scholar
  17. 17.
    Bull C, Gleeson D, Knight K (2003) Determination of B-site ordering and structural transformations in the mixed transition metal perovskites La2CoMnO6 and La2NiMnO6. J Phys Condens Matter 15(29):4927–4936CrossRefGoogle Scholar
  18. 18.
    Orayech B, Urcelay-Olabarria I, Lopez GA, Fabelo O, Faik A, Igartua JM (2015) Synthesis, structural, magnetic and phase-transition studies of the ferromagnetic La2CoMnO6 double perovskite by symmetry-adapted modes. Dalton Trans 44(31):13867–13880CrossRefGoogle Scholar
  19. 19.
    Serrate D, De Teresa JM, Ibarra MR (2007) Double perovskites with ferromagnetism above room temperature. J Phys Condens Matter 19(2):023201–023286CrossRefGoogle Scholar
  20. 20.
    Sahoo RC, Das S, Nath TK (2018) Influence of magnetic frustration and structural disorder on magnetocaloric effect and magneto-transport properties in La1.5Ca0.5CoMnO6 double perovskite. J Appl Phys 123(1):013902CrossRefGoogle Scholar
  21. 21.
    Sahoo RC, Paladhi D, Dasgupta P, Poddar A, Singh R, Das A, Nath TK (2017) Antisite-disorder driven large exchange bias effect in phase separated La1.5Ca0.5CoMnO6 double perovskite. J Magn Magn Mater 428:86–91CrossRefGoogle Scholar
  22. 22.
    Yang D, Harrison RJ, Schiemer JA, Lampronti GI, Liu X, Zhang F, Ding H, Liu YG, Carpenter MA (2016) Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite Sr2FeMoO6. Phys Rev B 93(2):024101CrossRefGoogle Scholar
  23. 23.
    Yin HQ, Zhou JS, Dass R, Zhou JP, Mcdevitt JT, Goodenough JB (2000) Grain-boundary room-temperature low-field magnetoresistance in Sr2FeMoO6 films. J Appl Phys 87(9):6761–6763CrossRefGoogle Scholar
  24. 24.
    Du C, Adur R, Wang H, Hauser AJ, Yang F, Hammel PC (2013) Control of magnetocrystalline anisotropy by epitaxial strain in double perovskite Sr2FeMoO6 films. Phys Rev Lett 110(14):147204CrossRefGoogle Scholar
  25. 25.
    Deniz H, Preziosi D, Alexe M, Hesse D, Eisenschmidt C, Schmidt G, Pintilie L (2015) Microstructure and properties of epitaxial Sr2FeMoO6 films containing SrMoO4 precipitates. J Mater Sci 50(8):3131–3138.  https://doi.org/10.1007/s10853-015-8874-7 CrossRefGoogle Scholar
  26. 26.
    Galceran R, Frontera C, Balcells L, Cisneros-Fernández J, López-Mir L, Roqueta J, Santiso J, Bagués N, Bozzo B, Pomar A, Sandiumenge F, Martínez B (2014) Engineering the microstructure and magnetism of La2CoMnO6−δ thin films by tailoring oxygen stoichiometry. Appl Phys Lett 105(24):242401CrossRefGoogle Scholar
  27. 27.
    Carpenter M (2015) Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy. J Phys Condens Matter 27(26):263201CrossRefGoogle Scholar
  28. 28.
    Cohelo A (2007) TOPAS-academic. Coelho Software Brisbane, AustraliaGoogle Scholar
  29. 29.
    Feng HL, Arai M, Matsushita Y, Tsujimoto Y, Guo Y, Sathish CI, Wang X, Yuan Y-H, Tanaka M, Yamaura K (2014) High-temperature ferrimagnetism driven by lattice distortion in double perovskite Ca2FeOsO6. J Am Chem Soc 136(9):3326–3329CrossRefGoogle Scholar
  30. 30.
    Yang D, Yang T, Sun Q, Chen Y, Lampronti GI (2017) The annealing effects on the crystal structure, magnetism and microstructure of the ferromagnetic double perovskite Sr2FeMoO6 synthesized via spark plasma sintering. J Alloys Compds 728:337–342CrossRefGoogle Scholar
  31. 31.
    Sánchez D, Alonso JA, García-Hernández M, Martínez-Lope MJ, Martínez JL, Mellergård A (2002) Origin of neutron magnetic scattering in antisite-disordered Sr2FeMoO6 double perovskites. Phys Rev B 65(10):104426CrossRefGoogle Scholar
  32. 32.
    Deniz H, Preziosi D, Alexe M, Hesse D (2017) Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates. J Appl Phys 121(2):023906CrossRefGoogle Scholar
  33. 33.
    Wang XL, James M, Horvat J, Dou SX (2002) Spin glass behaviour in ferromagnetic La2CoMnO6 perovskite manganite. Supercond Sci Technol 15(3):427–430CrossRefGoogle Scholar
  34. 34.
    Yang D, Chatterji T, Schiemer JA, Carpenter MA (2016) Strain coupling, microstructure dynamics, and acoustic mode softening in germanium telluride. Phys Rev B 93(14):144109CrossRefGoogle Scholar
  35. 35.
    Carpenter MA, Schiemer JA, Lascu I, Harrison RJ, Kumar A, Katiyar RS, Ortega N, Sanchez DA, Mejia CS, Schnelle W, Echizen M, Shinohara H, Heap AJF, Nagaratnam R, Dutton SE, Scott JF (2015) Elastic and magnetoelastic relaxation behaviour of multiferroic (ferromagnetic + ferroelectric + ferroelastic) Pb(Fe0.5Nb0.5)O3 perovskite. J Phys Condens Matter 27:285901CrossRefGoogle Scholar
  36. 36.
    Thomson RI, Chatterji T, Carpenter MA (2014) CoF2: a model system for magnetoelastic coupling and elastic softening mechanisms associated with paramagnetic↔antiferromagnetic phase transitions. J Phys Condens Matter 26:146001CrossRefGoogle Scholar
  37. 37.
    Michel C (1970) Structures and relationships of some perovskite-type compounds. Doctoral Dissertations. Paper 2281Google Scholar
  38. 38.
    Yang D, Wang W, Yang T, Lampronti GI, Ye H, Wu L, Yu Q, Lu S (2018) Role of spontaneous strains on the biphasic nature of partial B-site disorder double perovskite La2NiMnO6. APL Mater 6(6):066102CrossRefGoogle Scholar
  39. 39.
    Muñoz A, Alonso JA, Casais MT, Martínezlope MJ, Fernándezdíaz MT (2002) Crystal and magnetic structure of the complex oxides Sr2MnMoO6, Sr2MnWO6 and Ca2MnWO6: a neutron diffraction study. J Phys Condens Matter 14(38):8817–8830CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina
  2. 2.Key Laboratory of Clay MineralsMinistry of Land and ResourcesHangzhouChina
  3. 3.School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral MaterialsChina University of GeosciencesBeijingChina
  4. 4.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouChina
  5. 5.School of Materials Science and TechnologyShenyang University of Chemical TechnologyShenyangChina

Personalised recommendations