Journal of Materials Science

, Volume 54, Issue 8, pp 6608–6623 | Cite as

Texture-governed electrochemical corrosion behaviour of AA 6082 alloy

  • Jiayi Wang
  • Zhenli MiEmail author
  • Haitao Jiang
  • Runze Wang


The variations of through-thickness corrosion behaviour with the β-fibre evolution of hot-rolled AA 6082 alloy at the sub-surface layer (SL), quarter layer and middle layer (ML) in 3.5 wt% NaCl solution were mainly investigated by EIS, potentiodynamic polarization, SEM, XRD and 3D-MLM. Results showed that the strong β-fibre (rolling) and shear orientation formed at ML and SL, respectively. Compared to ML, charge transfer resistance increased, whereas double-layer capacitance was reduced at SL. From ML to SL, corrosion current density decreased and corrosion potential and pitting potential rose successively. Moreover, the deepened pits occurred at ML. Based on the surface energy of Al in the order (111) < (100) < (110)/high-index planes, the worse corrosion resistance at ML with strong β-fibre orientation stemmed from the high surface energy. As a consequence, the available shear textures are beneficial to improving the corrosion resistance. This provides a new design strategy to enhance the corrosion resistance for the commercial Al alloys.



The authors thank the financial support of the Science and Technology Major Project of Guangxi Province of China (Grant No. AA17202008-2).


  1. 1.
    Liu M, Qiu D, Zhao MC, Song GL, Atrens A (2008) The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr Mater 58:421–424CrossRefGoogle Scholar
  2. 2.
    Li X, Jiang B, He JJ, Zhang JY, Jiang ZT, Liu B, Pan FS (2017) Improvement of planar isotropy, mechanical properties and corrosion resistance of extruded Mg–3Al–1Zn alloy sheet by special grain re-orientation. J Alloys Compd 721:106–117CrossRefGoogle Scholar
  3. 3.
    Jiang B, Xiang Q, Atrens A, Song JF, Pan FS (2017) Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets. Corros Sci 126:374–380CrossRefGoogle Scholar
  4. 4.
    Bland LG, Gusieva K, Scully JR (2017) Effect of crystallographic orientation on the corrosion of magnesium: comparison of film forming and bare crystal facets using electrochemical impedance and Raman spectroscopy. Electrochim Acta 227:136–151CrossRefGoogle Scholar
  5. 5.
    He JJ, Jiang B, Xu J, Zhang JY, Yu XW, Liu B, Pan FS (2017) Effect of texture symmetry on mechanical performance and corrosion resistance of magnesium alloy sheet. J Alloys Compd 723:213–224CrossRefGoogle Scholar
  6. 6.
    Hagihara K, Okubo M, Yamasaki M, Nakano T (2016) Crystal-orientation-dependent corrosion behaviour of single crystals of a pure Mg and Mg–Al and Mg–Cu solid solutions. Corros Sci 109:68–85CrossRefGoogle Scholar
  7. 7.
    Jiang QT, Ma XM, Zhang K, Li YT, Li XG, Li YJ, Ma ML, Hou BR (2015) Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy. J Magn Alloy 3:309–314CrossRefGoogle Scholar
  8. 8.
    Yang L, Zhou XR, Curioni M, Pawar S, Liu H, Fan ZY, Scamans G, Thompson G (2015) Corrosion behavior of pure magnesium with low iron content in 3.5 wt% NaCl solution. J Electrochem Soc 162:C362–C368CrossRefGoogle Scholar
  9. 9.
    Wang BJ, Xu DK, Dong JH, Ke W (2014) Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg–3Al–1Zn (wt%) bar. Scr Mater 88:5–8CrossRefGoogle Scholar
  10. 10.
    Song GL, Xu ZQ (2012) Crystal orientation and electrochemical corrosion of polycrystalline Mg. Corros Sci 63:100–112CrossRefGoogle Scholar
  11. 11.
    Chojnacka A, Kawalko J, Koscielny H, Guspiel J, Drewienkiewicz A, Bieda M, Pachla W, Kulczyk M, Sztwiertnia K, Beltowska-Lehman E (2017) Corrosion anisotropy of titanium deformed by the hydrostatic extrusion. Appl Surf Sci 426:987–994CrossRefGoogle Scholar
  12. 12.
    Dai NW, Zhang LC, Zhang JX, Zhang X, Ni QZ, Chen Y, Wu ML, Yang C (2016) Distinction in corrosion resistance of selective laser melted Ti–6Al–4V alloy on different planes. Corros Sci 111:703–710CrossRefGoogle Scholar
  13. 13.
    Guo WY, Sun J, Wu JS (2009) Effect of deformation on corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy. Mater Charact 60:173–177CrossRefGoogle Scholar
  14. 14.
    Ma Y, Zhou X, Liao Y, Yi Y, Wu H, Wang Z, Huang W (2016) Localised corrosion in AA 2099-T83 aluminium–lithium alloy: the role of grain orientation. Corros Sci 107:41–48CrossRefGoogle Scholar
  15. 15.
    Fan L, Lu HM, Leng J, Sun ZG, Chen CB (2015) The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes. J Power Sources 299:66–69CrossRefGoogle Scholar
  16. 16.
    Beck G, Funk S (2012) Correlation between optical appearance and orientation of aluminium. Surf Coat Technol 206:2371–2379CrossRefGoogle Scholar
  17. 17.
    Mutasa B, Farkas D (1998) Atomistic structure of high-index surfaces in metals and alloys. Surf Sci 415:312–319CrossRefGoogle Scholar
  18. 18.
    Wang XC, Jia Y, Yao QK, Wang F, Ma JX, Hu X (2004) The calculation of the surface energy of high-index surfaces in metals at zero temperature. Surf Sci 551:179–188CrossRefGoogle Scholar
  19. 19.
    Brito P, Schuller É, Silva J, Campos TR, Araújo CRD, Carneiro JR (2017) Electrochemical corrosion behaviour of (100), (110) and (111) Fe3Al single crystals in sulphuric acid. Corros Sci 126:366–373CrossRefGoogle Scholar
  20. 20.
    Brewick PT, Kota N, Lewis AC, DeGiorgi VG, Geltmacher AB, Qidwai SM (2017) Microstructure-sensitive modeling of pitting corrosion: effect of the crystallographic orientation. Corros Sci 129:54–69CrossRefGoogle Scholar
  21. 21.
    Lu ZP, Shoji T, Dan TC, Qiu YB, Yonezawa T (2010) The effect of roll-processing orientation on stress corrosion cracking of warm-rolled 304L stainless steel in oxygenated and deoxygenated high temperature pure water. Corros Sci 52:2547–2555CrossRefGoogle Scholar
  22. 22.
    Shahryari A, Szpunar JA, Omanovic S (2009) The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior. Corros Sci 51:677–682CrossRefGoogle Scholar
  23. 23.
    Lv JL, Liang TX, Wang C (2016) Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel. J Solid State Chem 240:109–114CrossRefGoogle Scholar
  24. 24.
    Wang SY, Wang JQ (2014) Effect of grain orientation on the corrosion behavior of polycrystalline Alloy 690. Corros Sci 85:183–192CrossRefGoogle Scholar
  25. 25.
    Martinez-Lombardia E, Gonzalez-Garcia Y, Lapeire L, De Graeve I, Verbeken K, Kestens L, Mol JMC, Terryn H (2014) Scanning electrochemical microscopy to study the effect of crystallographic orientation on the electrochemical activity of pure copper. Electrochim Acta 116:89–96CrossRefGoogle Scholar
  26. 26.
    Song JM, Zou YS, Kuo CC, Lin SC (2013) Orientation dependence of the electrochemical corrosion properties of electrodeposited Cu foils. Corros Sci 74:223–231CrossRefGoogle Scholar
  27. 27.
    Goli F, Jamaati R (2018) Intensifying Goss/Brass texture ratio in AA2024 by asymmetric cold rolling. Mater Lett 219:229–232CrossRefGoogle Scholar
  28. 28.
    Zhao Q, Liu ZY, Li SS, Huang TT, Xia P, Lu LQ (2017) Evolution of the Brass texture in an Al-Cu-Mg alloy during hot rolling. J Alloys Compd 691:786–799CrossRefGoogle Scholar
  29. 29.
    Huang YC, Liu Y, Li Q, Liu X, Yang CG (2016) Relevance between microstructure and texture during cold rolling of AA3104 aluminum alloy. J Alloys Compd 673:383–389CrossRefGoogle Scholar
  30. 30.
    Liu WC, Man CS, Raabe D (2010) Effect of strain hardening on texture development in cold rolled Al-Mg alloy. Mat Sci Eng A 527:1249–1254CrossRefGoogle Scholar
  31. 31.
    Liu WC, Kong XY, Chen MB, Li J, Yuan H, Yang QX (2009) Texture development in a pseudo cross-rolled AA 3105 aluminum alloy. Mat Sci Eng A 516:263–269CrossRefGoogle Scholar
  32. 32.
    Chowdhury SG, Dutta A, Ravikumar B, Kumar A (2006) Textural evolution during accumulative roll bonding of an Al-Li alloy. Mat Sci Eng A 428:351–357CrossRefGoogle Scholar
  33. 33.
    Wang XF, Guo MX, Cao LY, Luo JR, Zhang JS, Zhuang LZ (2015) Influence of thermomechanical processing on microstructure, texture evolution and mechanical properties of Al–Mg–Si–Cu alloy sheets. T Nonferr Metal Soc 25:1752–1762CrossRefGoogle Scholar
  34. 34.
    Chen JZ, Zhen L, Shao WZ, Dai SL, Cui YX (2008) Through-thickness texture gradient in AA 7055 aluminum alloy. Mater Lett 62:88–90CrossRefGoogle Scholar
  35. 35.
    Liu WC, Radhakrishnan B, Li Z, Morris JG (2008) Through-thickness texture gradient in continuous cast AA 5052 aluminum alloy sheet. Mat Sci Eng A 472:170–178CrossRefGoogle Scholar
  36. 36.
    Kamikawa N, Tsuji N, Huang XX, Hansen N (2007) Through-Thickness Characterization of Microstructure and Texture in High Purity Aluminum Processed to High Strain by Accumulative Roll-Bonding. Mater Trans 48:1978–1985CrossRefGoogle Scholar
  37. 37.
    Engler O, Hirsch J (2002) Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications—a review. Mat Sci Eng A 336:249–262CrossRefGoogle Scholar
  38. 38.
    Daaland O, Nes E (1996) Origin of Cube Texture During Hot Rolling of Commercial Al-Mn-Mg Alloys. Acta Mater 44:1389–1411CrossRefGoogle Scholar
  39. 39.
    Zhang F, Evertsson J, Bertram F, Rullik L, Carla F, Långberg M, Lundgren E, Pan JS (2017) Integration of electrochemical and synchrotron-based X-ray techniques for in situ investigation of aluminum anodization. Electrochim Acta 241:299–308CrossRefGoogle Scholar
  40. 40.
    Esmaily M, Mortazavi N, Osikowicz W, Hindsefelt H, Svensson JE, Halvarsson M, Thompson GE, Johansson LG (2016) Influence of Multi-Pass Friction Stir Processing on the Corrosion Behavior of an Al-Mg-Si Alloy. J Electrochem Soc 163:C124–C130CrossRefGoogle Scholar
  41. 41.
    Li H, Zhao PP, Wang ZX, Mao QZ, Fang BJ, Song RG, Zheng ZQ (2016) The intergranular corrosion susceptibility of a heavily overaged Al-Mg-Si-Cu alloy. Corros Sci 107:113–122CrossRefGoogle Scholar
  42. 42.
    Kumar N, Rao PN, Jayaganthan R, Brokmeier H (2015) Effect of cryorolling and annealing on recovery, recrystallisation, grain growth and their influence on mechanical and corrosion behaviour of 6082 Al alloy. Mater Chem Phys 165:177–187CrossRefGoogle Scholar
  43. 43.
    Wu YN, Liao HC (2013) Corrosion Behavior of Extruded near Eutectic Al-Si-Mg and 6063 Alloys. J Mater Sci Technol 29:380–386CrossRefGoogle Scholar
  44. 44.
    Laurino A, Andrieu E, Harouard J, Lacaze J, Lafont M, Odemer G, Blanc C (2013) Corrosion Behavior of 6101 Aluminum Alloy Strands for Automotive Wires. J Electrochem Soc 160:C569–C575CrossRefGoogle Scholar
  45. 45.
    Händel M, Nickel D, Lampke T (2011) Effect of different grain sizes and textures on the corrosion behaviour of aluminum alloy AA6082. Materialwiss Werkst 42:606–611CrossRefGoogle Scholar
  46. 46.
    Hockauf M, Meyer LW, Nickel D, Alisch G, Lampke T, Wielage B, Krüger L (2008) Mechanical properties and corrosion behaviour of ultrafine-grained AA6082 produced by equal-channel angular pressing. J Mater Sci 43:7409–7417. CrossRefGoogle Scholar
  47. 47.
    Gerengi H, Slepski P, Ozgan E, Kurtay M (2015) Investigation of corrosion behavior of 6060 and 6082 aluminum alloys under simulated acid rain conditions. Mater Corros 66:233–240CrossRefGoogle Scholar
  48. 48.
    Comotti IM, Trueba M, Trasatti SP (2013) The pit transition potential in the repassivation of aluminium alloys. Surf Interface Anal 45:1575–1584CrossRefGoogle Scholar
  49. 49.
    Panagopoulos CN, Georgiou EP, Gavras AG (2009) Corrosion and wear of 6082 aluminum alloy. Tribol Int 42:886–889CrossRefGoogle Scholar
  50. 50.
    Huang YL, Shih H, Huang HC, Daugherty J, Wu S, Ramanathan S, Chang C, Mansfeld F (2008) Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS). Corros Sci 50:3569–3575CrossRefGoogle Scholar
  51. 51.
    Lv JL, Luo HY (2013) Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy. Surf Coat Technol 235:513–520CrossRefGoogle Scholar
  52. 52.
    Zhang GA, Xu LY, Cheng YF (2009) Investigation of erosion-corrosion of 3003 aluminum alloy in ethylene glycol-water solution by impingement jet system. Corros Sci 51:283–290CrossRefGoogle Scholar
  53. 53.
    Li Q, Xu SQ, Hu JY, Zhang SY, Zhong XK, Yang XK (2010) The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D. Electrochim Acta 55:887–894CrossRefGoogle Scholar
  54. 54.
    Ma HY, Cheng XL, Li GQ, Chen SH, Quan ZL, Zhao SY, Niu L (2000) The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros Sci 42:1669–1683CrossRefGoogle Scholar
  55. 55.
    Wang DP, Yang D, Zhang DQ, Li K, Gao LX, Lin T (2015) Electrochemical and DFT studies of quinoline derivatives on corrosion inhibition of AA5052 aluminium alloy in NaCl solution. Appl Surf Sci 357:2176–2183CrossRefGoogle Scholar
  56. 56.
    Wu XJ, Ma HY, Chen SH, Xu ZY, Sui AF (1999) General equivalent circuits for Faradaic electrode processes under electrochemical reaction control. J Electrochem Soc 146:1847–1853CrossRefGoogle Scholar
  57. 57.
    Tang JW, Shao YW, Guo JB, Zhang T, Meng GZ, Wang FH (2010) The effect of H2S concentration on the corrosion behavior of carbon steel at 90 C. Corros Sci 52:2050–2058CrossRefGoogle Scholar
  58. 58.
    Veloz MA, González I (2002) Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S. Electrochim Acta 48:135–144CrossRefGoogle Scholar
  59. 59.
    Liu J, Wang DP, Gao LX, Zhang DQ (2016) Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt% NaCl solution. Appl Surf Sci 389:369–377CrossRefGoogle Scholar
  60. 60.
    Wen L, Wang YM, Zhou Y, Ouyang JH, Guo LX, Jia DC (2010) Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy. Corros Sci 52:2687–2696CrossRefGoogle Scholar
  61. 61.
    Sherif EM, Park SM (2006) Effects of 1,4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions. Electrochim Acta 51:1313–1321CrossRefGoogle Scholar
  62. 62.
    Song YW, Shan DY, Chen RS, Han EH (2009) Corrosion characterization of Mg–8Li alloy in NaCl solution. Corros Sci 51:1087–1094CrossRefGoogle Scholar
  63. 63.
    Li Y, Xu J (2017) Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva? Electrochim Acta 233:151–166CrossRefGoogle Scholar
  64. 64.
    Beneaa L, Celisb JP (2018) Reactivity of porous titanium oxide film and chitosan layer electrochemically formed on Ti–6Al–4V alloy in biological solution. Surf Coat Technol 354:145–152CrossRefGoogle Scholar
  65. 65.
    Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2007) Role of intermetallic phases in localized corrosion of AA5083. Electrochim Acta 52:7651–7659CrossRefGoogle Scholar
  66. 66.
    Trueba M, Trasatti SP (2010) Study of Al alloy corrosion in neutral NaCl by the pitting scan technique. Mater Chem Phys 121:523–533CrossRefGoogle Scholar
  67. 67.
    Zhang JY, Ma MY, Shen FH, Yi DQ, Wang B (2018) Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al–Mg–Si alloy cables. Mat Sci Eng A 710:27–37CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Engineering TechnologyUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringBeihang UniversityBeijingPeople’s Republic of China

Personalised recommendations