Journal of Materials Science

, Volume 54, Issue 8, pp 6323–6331 | Cite as

Colossal dielectric behavior and dielectric anomalies in Sr2TiCrO6 ceramics

  • J. Sun
  • R. Ahmed
  • G. J. Wang
  • S. T. Wang
  • J. Wang
  • S. A. Suhaib
  • Y. M. Xie
  • H. Bi
  • C. C. WangEmail author
Electronic materials


Sr2TiCrO6 ceramic samples were prepared via solid-state method, and their dielectric properties were systematically investigated. Colossal dielectric behavior was found to occur near room temperature, and two dielectric anomalies were observed around 620 and 820 K. The colossal dielectric behavior follows the dual-relaxation mechanism, which is composed of a dipolar relaxation associated with the defect dipole pairs of \( {\text{OH}}_{\text{O}}^{ \cdot } \)–Cr3+ and a Maxwell–Wagner relaxation due to the surface-layer effect originated from humidity sensitivity. The low-temperature anomaly is considered to be a pseudo-relaxor behavior caused by oxygen vacancies, and the high-temperature anomaly results from negative capacitance due to the carriers changing from localized state to free state.



The authors thank financial support from National Natural Science Foundation of China (Grant Nos. 51572001, 51872001).


  1. 1.
    Cava RJ (2001) Dielectric materials for applications in microwave communications. J Mater Chem 11:54–62CrossRefGoogle Scholar
  2. 2.
    Wersing W (1996) Microwave ceramics for resonators and filters. Curr Opin Solid State Mater Sci 1:715–731CrossRefGoogle Scholar
  3. 3.
    Fiedziuszko SJ, Hunter IC, Itoh T, Kobayashi Y, Nishikawa T, Stitzer SN, Wakino K (2002) Dielectric materials, devices, and circuits. IEEE Trans Microw Theory Tech 50(3):706–720CrossRefGoogle Scholar
  4. 4.
    Vanderah TA (2002) Talking ceramics. Science 298:1182–1184CrossRefGoogle Scholar
  5. 5.
    Hasegawa N, Sasaki M, Hattori T, Satoh H, Takesada M, Onodera A (2015) Anomalous dielectric behavior in A-site ordered perovskite CaCu3Ti4O12: effect of A′-site doping. Ferroelectrics 485:129–135CrossRefGoogle Scholar
  6. 6.
    Chakravarty D, Singh P, Singh S, Kumar D, Parkash O (2007) Electrical conduction behavior of high dielectric constant perovskite oxide LaxCa1−3x/2Cu3Ti4O12. J Alloys Compd 438:253–257CrossRefGoogle Scholar
  7. 7.
    Thongbai P, Yamwong T, Maensiri S (2008) Correlation between giant dielectric response and electrical conductivity of CuO ceramic. Solid State Commun 147:385–387CrossRefGoogle Scholar
  8. 8.
    Yan-Qing T, Meng Y, Yong-Mei H (2012) Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics. J Phys D Appl Phys 46:015303CrossRefGoogle Scholar
  9. 9.
    Yu J, Ishikawa T, Arai Y, Yoda S (2005) Extrinsic origin of giant permittivity in hexagonal BaTiO3 single crystals: contributions of interfacial layer and depletion layer. Appl Phys Lett 87:252904CrossRefGoogle Scholar
  10. 10.
    Zhu M, Zhang N, Wang H et al (2017) Point-defect-induced colossal dielectric behavior in GaAs single crystals. RSC Adv 7:26130–26135CrossRefGoogle Scholar
  11. 11.
    Ni W, Ye JN, Guo YM et al (2017) Decisive role of mixed-valence structure in colossal dielectric constant of LaFeO3. J Am Ceram Soc 100:3042–3049CrossRefGoogle Scholar
  12. 12.
    Wang CC, Ni W, Zhang D, Sun XH, Wang J, Li HB, Zhang N (2016) Dielectric properties of pure and Mn-doped CaCu3Ti4O12 ceramics over a wide temperature range. J Electroceram 36:46–57CrossRefGoogle Scholar
  13. 13.
    Wang GJ, Wang CC, Huang SG, Sun XH, Lei CM, Li T, Liu LN (2013) Origin of the colossal dielectric properties in double-perovskite Sr2CoNbO6. AIP Adv 3:022109CrossRefGoogle Scholar
  14. 14.
    Chung CY, Chang YH, Chang YS, Chen GJ (2004) High dielectric permittivity in Ca1−xBixTi1−xCrxO3 ferroelectric perovskite ceramics. J Alloys Compd 385:298–303CrossRefGoogle Scholar
  15. 15.
    Sun J, Wang ST, Tong L, Wang J, Suhaib SA, Xie YM, Zhu GB, Wang CC (2018) Colossal and relaxor-like dielectric behaviors in SrCrO4 ceramics. J Alloys Compd 764:300–306CrossRefGoogle Scholar
  16. 16.
    Sleight AW, Gillson JL, Bierstedt PE (1993) High-temperature superconductivity in the BaPb1−xBixO3 system. Solid State Commun 88:841–842CrossRefGoogle Scholar
  17. 17.
    Wang GJ, Wang CC, Huang SG, Lei CM, Sun XH, Li T, Mei JY (2012) Polaronic relaxation in Ca2TiMnO6 at low temperatures. Mater Res Bull 47:2692–2695CrossRefGoogle Scholar
  18. 18.
    Philipp JB, Majewski P, Alff L, Erb A, Gross R, Graf T (2003) Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A = Sr, Ba, and Ca). Phys Rev B 68:144431CrossRefGoogle Scholar
  19. 19.
    Kato H, Okuda T, Okimoto Y, Tomioka Y, Oikawa K, Kamiyama T, Tokura Y (2004) Structural and electronic properties of the ordered double perovskites A2MReO6 (A = Sr, Ca; M = Mg, Sc, Cr, Mn, Fe Co, Ni, Zn). Phys Rev B 69:184412CrossRefGoogle Scholar
  20. 20.
    Gateshki M, Igartua JM, Faik A (2007) Crystal structure and phase transitions of Sr2CdWO6. J Solid State Chem 180:2248–2255CrossRefGoogle Scholar
  21. 21.
    Negrete P, Alberto J (2013) Síntesis y cálculo de las propiedades estructurales y electrónicas del material Sr2TiCrO6 aplicando el formalismo de la teoría funcional densidad (DFT). Universidad Nacional de ColombiaGoogle Scholar
  22. 22.
    Lufaso MW, Woodward PM (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Cryst 57:725–738CrossRefGoogle Scholar
  23. 23.
    Seeger A, Lunkenheimer P, Hemberger J, Mukhin AA, Ivanov YV, Balbashov AM (1999) Charge carrier localization in investigated by ac conductivity measurements. J Phys Condens Matter 11:3273CrossRefGoogle Scholar
  24. 24.
    Bieger T, Maier J, Waser R (1992) Optical investigation of oxygen incorporation in SrTiO3. Solid State Ion 53:578–582CrossRefGoogle Scholar
  25. 25.
    Hu W, Liu Y, Witherset RL et al (2013) Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater 12:821CrossRefGoogle Scholar
  26. 26.
    Qi H, Luan Y, Che S, Zuo L, Zhao XD, Hong CM (2016) Preparation, characterization and electrical properties of Ca and Sr doped LaCrO3. Inorg Chem Commun 66:33–35CrossRefGoogle Scholar
  27. 27.
    Kumar P, Singh RK, Sinha ASK, Singh P (2013) Effect of isovalent ion substitution on electrical and dielectric properties of LaCrO3. J Alloys Compd 576:154–160CrossRefGoogle Scholar
  28. 28.
    Hurlen T (1959) On the defect structure of rutile. Acta Chem Scand 13:365CrossRefGoogle Scholar
  29. 29.
    Yahia J (1963) Dependence of the electrical conductivity and thermoelectric power of pure and aluminum-doped rutile on equilibrium oxygen pressure and temperature. Phys Rev 130:1711CrossRefGoogle Scholar
  30. 30.
    Thurber WR, Mante AJH (1965) Thermal conductivity and thermoelectric power of rutile (TiO2). Phys Rev 139:A1655CrossRefGoogle Scholar
  31. 31.
    Yang GJ, Gao DQ, Zhang JL, Zhang J, Shi ZH, Xue DS (2011) Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al2O3 nanoparticles. J Phys Chem C 115:16814–16818CrossRefGoogle Scholar
  32. 32.
    Sun Y, Egawa T, Zhang L, Yao X (2003) Novel method to directly prepare high-surface-area anatase titania nanoparticles with trapped electrons on oxygen vacancies. J Mater Sci Lett 22:799–802CrossRefGoogle Scholar
  33. 33.
    Konstantinova E, Weidmann J, Dittrich T (2000) Influence of adsorbed water and oxygen on the photoluminescence and EPR of por-TiO2 (Anatase). J Porous Mater 7:389–392CrossRefGoogle Scholar
  34. 34.
    Tong L, Sun J, Wang ST, Guo YM, Li QJ, Wang H, Wang CC (2017) Normal and abnormal dielectric relaxation behavior in KTaO3 ceramics. RSC Adv 7:50680–50687CrossRefGoogle Scholar
  35. 35.
    Kang BS, Choi SK, Park CH (2003) Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700 °C. J Appl Phys 94:1904–1911CrossRefGoogle Scholar
  36. 36.
    Moretti P, Michel-Calendini FM (1987) Impurity energy levels and stability of Cr and Mn ions in cubic BaTiO3. Phys Rev B 36:3522CrossRefGoogle Scholar
  37. 37.
    Selme MO, Pecheur P (1988) The electronic structure of transition-metal impurities in SrTiO3. J Phys C Solid State Phys 21:1779CrossRefGoogle Scholar
  38. 38.
    Wang CC, Lei CM, Wang GJ, Sun XH, Li T, Huang SG, Wang H, Li YD (2013) Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J Appl Phys 113:094103CrossRefGoogle Scholar
  39. 39.
    Wang CC, Zhang MN, Xu KB, Wang GJ (2012) Origin of high-temperature relaxor-like behavior in CaCu3Ti4O12. J Appl Phys 112:034109CrossRefGoogle Scholar
  40. 40.
    Liu LN, Wang CC, Lei CM et al (2013) Relaxor-and phase-transition-like behaviors in ZnO single crystals at high temperatures. Appl Phys Lett 102:112907CrossRefGoogle Scholar
  41. 41.
    Wang GJ, Wang CC, Huang SG, Wang J, Liu LN (2014) Origin of dielectric anomaly in double perovskite Ba2CoNbO6. Ceram Int 40:14607–14612CrossRefGoogle Scholar
  42. 42.
    Li M, Sinclair DC, West AR (2011) Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: a cautionary tale. J Appl Phys 109:084106CrossRefGoogle Scholar
  43. 43.
    Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys 32:R57CrossRefGoogle Scholar
  44. 44.
    Elliott SR (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217CrossRefGoogle Scholar
  45. 45.
    Ala’eddin AS, Poopalan P (2011) AC conductivity and dielectric relaxation behavior of sol–gel BaxSr1−xTiO3 thin films. J Mater Sci Technol 27:802–808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Dielectric Functional Materials, School of Physics and Material ScienceAnhui UniversityHefeiChina
  2. 2.College of Chemistry and Chemical EngineeringAnhui UniversityHefeiChina

Personalised recommendations