Journal of Materials Science

, Volume 54, Issue 8, pp 6586–6593 | Cite as

Suppression of twinning mechanism on nanoscale: size effect in Cu–Ni–Al shape memory alloy

  • M. VronkaEmail author
  • M. Karlik
  • J. Vesely
  • J. Manak
  • O. Heczko


In Cu–Ni–Al shape memory alloy, we observed a significant size effect on the twinning stress, i.e. the dependency of compression stress needed for twin-variant reorientation on sample size using in situ loading of micro- and nanoscale pillars in scanning and transmission electron microscopes. With decreasing dimensions of pillars, the twinning stress sharply increases following scaling power law with an exponent approximately n =  2/3. For very small nanopillars, the projected twinning stress is so high that the nanopillars are deformed by plastic deformation instead of twinning. Our results shed light on some of the fundamental aspects of nanoscale behaviour of shape memory alloys which is important for applications in microelectromechanical systems.



This work has been financially supported by the Czech Science Foundation (Grant Number 14-36566G) (AdMat) and furthermore by the Project LM2015087 of the Czech Ministry of Education, Youth and Sports. MV. would like to acknowledge financial support by the Grant SGS16/249/OHK4/3T/14. MK would like to acknowledge financial support of the ERDF in the frame of the Project No. CZ.02.1.01/0.0/0.0/15_003/0000485.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest to this work.


  1. 1.
    Ullakko K, Huang JK, Kanter C, Kokorin VV, O’Handley RC (1996) Large magnetic-field-induced strains in Ni2MnGa single crystal. Appl Phys Lett 69:1966–1968CrossRefGoogle Scholar
  2. 2.
    Heczko O, Scheerbaum N, Gutfleisch O (2009) Chapter 14: magnetic shape memory phenomena. In: Liu JP, Fullerton E, Gutfleisch O, Sellmyer DJ (eds) Nanoscale magnetic materials and applications. Springer, New York, pp 399–439CrossRefGoogle Scholar
  3. 3.
    Kohl M, Krevet B, Yeduru SR, Ezer Y, Sozinov A (2011) A novel foil actuator using the magnetic shape memory effect. Smart Mater Struct 20:094009CrossRefGoogle Scholar
  4. 4.
    Kohl M, Gueltig M, Pinneker V, Yin R, Wendler F, Krevet B (2014) Magnetic shape memory microactuators. Micromachines 5:1135–1160CrossRefGoogle Scholar
  5. 5.
    Wang Y, Huang Ch, Wu H, Liao X, Gao J, Wang D, Yang S, Song X (2017) Effect of martensitic structure on the magnetic field controlled damping effect in a Ni–Fe–Mn–Ga ferromagnetic shape memory alloy. J Mater Sci 52:12854–12860. CrossRefGoogle Scholar
  6. 6.
    Feng J, Li Z, Jia Y, Yang B, Liu S, Zhao X, Li L, Zuo L (2018) Significant high-frequency electromagnetic wave absorption performance of Ni2+xMn1−xGa alloys. J Mater Sci 53:11779–11790. CrossRefGoogle Scholar
  7. 7.
    Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724CrossRefGoogle Scholar
  8. 8.
    Dou R, Derby B (2009) A universal scaling law for the strength of metal micropillars and nanowires. Scr Mater 61:524–527CrossRefGoogle Scholar
  9. 9.
    Yu Q, Qi L, Chen K, Mishra RK, Li J, Minor AM (2012) The nanostructured origin of deformation twinning. Nano Lett 12:887–892CrossRefGoogle Scholar
  10. 10.
    Shi X, Cui L, Jiang D, Yu C, Guo F, Yu M, Ren Y, Liu Y (2014) Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys. J Mater Sci 49:4643–4647. CrossRefGoogle Scholar
  11. 11.
    Kabirifar P, Chu K, Ren F, Sun Q (2018) Effects of grain size on compressive behavior of NiTi polycrystalline superelastic macro- and micropillars. Mater Lett 214:53–55CrossRefGoogle Scholar
  12. 12.
    Frick CP, Clark BG, Orso S, Schneider AS, Arzt E (2008) Size effect on strength an strain hardening of small-scale [1 1 1] nickel compression pillars. Mater Sci Eng: A 489:319–329CrossRefGoogle Scholar
  13. 13.
    Frick CP, Clark BG, Schneider AS, Maaß R, Van Petegem S, Van Swygenhoven H (2010) On the plasticity of small-scale nickel–titanium shape memory alloys. Scr Mater 62:492–495CrossRefGoogle Scholar
  14. 14.
    Liu L, Ding X, Sun J, Li S, Salje EKH (2016) Breakdown of shape memory effect in bent Cu–Al–Ni nanopillars: when twin boundaries become stacking faults. Nano Lett 16:194–198CrossRefGoogle Scholar
  15. 15.
    Zhang HS, Komvopoulos K (2006) Nanoscale pseudoelasticity of single-crystal Cu–Al–Ni shape-memory alloy induced by cyclic nanoindentation. J Mater Sci 41:5021–5024. CrossRefGoogle Scholar
  16. 16.
    San Juan J, No ML, Schuh CA (2012) Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars. Acta Mater 60:4093–4106CrossRefGoogle Scholar
  17. 17.
    San Juan J, No ML, Schuh CA (2008) Superelasticity and shape memory in micro- and nanometer-scale pillars. Adv Mater 20:272–278CrossRefGoogle Scholar
  18. 18.
    San Juan J, No ML, Schuh CA (2011) Thermomechanical behavior at the nanoscale and size effects in shape memory alloys. J Matter Res 26:2461–2469CrossRefGoogle Scholar
  19. 19.
    San Juan J, Gomez-Cortes JF, Lopez GA, Jiao C, No ML (2014) Long-term superelastic cycling at nano-scale in Cu–Al–Ni shape memory alloy micropillars. Appl Phys Lett 104:011901CrossRefGoogle Scholar
  20. 20.
    Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59:537–553CrossRefGoogle Scholar
  21. 21.
    Gómez-Cortés JF, Nó ML, López-Ferreño I, Hernández-Saz J, Molina SI, Chuvilin A, San Juan J (2017) Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale. Nat Nanotechnol 12:790–796CrossRefGoogle Scholar
  22. 22.
    Reinhold M, Kiener D, Knowlton WB, Dehm G, Müllner P (2009) Deformation twinning in Ni–Mn–Ga micropillars with 10 M martensite. J Appl Phys 106:053906CrossRefGoogle Scholar
  23. 23.
    Musiienko D, Straka L, Klimša L, Saren A, Sozinov A, Heczko O, Ullakko K (2018) Giant magnetic-field-induced strain in Ni–Mn–Ga micropillars. Scr Mater 150:173–176CrossRefGoogle Scholar
  24. 24.
    Vronka M, Seiner H, Heczko O (2017) Temperature dependence of twinning stress: analogy between Cu–Ni–Al and Ni–Mn–Ga shape memory single crystals. Philos Mag 97:1479–1497CrossRefGoogle Scholar
  25. 25.
    Shim S, Bei H, Miller MK, Pharr GM, George EP (2009) Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater 57:503–510CrossRefGoogle Scholar
  26. 26.
    San Juan J, No ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4:415–425CrossRefGoogle Scholar
  27. 27.
    Novák V, Šittner P, Ignácová S, Černoch T (2006) Transformation behavior of prism shape memory alloy single crystals. Mater Sci Eng: A 438:755–762CrossRefGoogle Scholar
  28. 28.
    Ge Y, Vronka M, Vertat P, Karlik M, Hannula SP, Heczko O, Deformation twinning in 2H martensite in Cu–Ni–Al shape memory alloy, article in preparationGoogle Scholar
  29. 29.
    Christian JW, Mahajant S (1995) Deformation twinning. Prog Mater Sci 39:1–157CrossRefGoogle Scholar
  30. 30.
    Derlet PM, Maaß R (2015) Universal power-law strengthening in metals? Scr Mater 109:19–22CrossRefGoogle Scholar
  31. 31.
    Dou R, Derby B (2008) The strength of gold nanowire forests. Scr Mater 59:151–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Physics, Czech Academy of SciencesPragueCzech Republic
  2. 2.Department of Materials, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 2Czech Republic
  3. 3.Department of Physics of Materials, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations