Journal of Materials Science

, Volume 54, Issue 8, pp 6174–6185 | Cite as

Common but differentiated flexible MIL-53(Al): role of metal sources in synthetic protocol for tuning the adsorption characteristics

  • Lingyu Feng
  • Rui Chen
  • Shuliang Hou
  • Wei Chen
  • Hailong Huang
  • Ying Wang
  • Yi-nan WuEmail author
  • Fengting LiEmail author
Chemical routes to materials


The property tuning of metal–organic frameworks (MOFs) has been an active pursuit in both academia and industry. In this work, structural properties of a promising flexible MOF, MIL-53(Al), were finely tuned via a metal source-based synthetic protocol. Varying degrees of framework flexibility and hydrophilicity have been achieved using water-insoluble metal sources, such as alumina, aluminum hydroxide, boehmite, and traditional aluminum nitrate for synthesis. MIL-53(Al) prepared from alumina was the most rigid and hydrophilic as is confirmed by powder X-ray diffraction, vapor adsorption, and diffuse reflectance infrared Fourier transform spectroscopy. Magic-angle spinning nuclear magnetic resonance results revealed that utilizing insoluble metal sources entailed different reaction mechanisms during MOF synthesis and introduced uncoordinated carboxyl into the framework. Through selection of metal sources, the adsorption characteristics of MIL-53(Al) were successfully tuned. The samples prepared from insoluble metal sources showed increased adsorption capacities toward iodine and bisphenol A. The maximum capacity toward iodine in water and n-hexane was one and six times higher than that of conventional MIL-53(Al), respectively. This finding offers excellent prospects for the structural regulation and property tuning of MOFs.



This work was supported by the National Natural Science Foundation of China (21777119), Science and Technology Commission of Shanghai Municipality (17230711600), the Fundamental Research Funds for the Central Universities, and Sichuan Science and Technology Program (2018TJPT0017).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10853_2018_3287_MOESM1_ESM.docx (333 kb)
Supplementary material 1 (DOCX 333 kb)


  1. 1.
    Su X, Bromberg L, Martis V, Simeon F, Huq A, Hatton TA (2017) Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: structural characterization and enhanced CO2 adsorption. ACS Appl Mater Interfaces 9(12):11299–11306. CrossRefGoogle Scholar
  2. 2.
    Kim JY, Zhang LD, Balderas-Xicohtencatl R, Park J, Hirscher M, Moon HR, Oh H (2017) Selective hydrogen isotope separation via breathing transition in MIL-53(AI). J Am Chem Soc 139(49):17743–17746. CrossRefGoogle Scholar
  3. 3.
    Xu HQ, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu SH, Jiang HL (2015) Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron-hole separation via electron trap states. J Am Chem Soc 137(42):13440–13443. CrossRefGoogle Scholar
  4. 4.
    Chen X, Tong R, Shi Z, Yang B, Liu H, Ding S, Wang X, Lei Q, Wu J, Fang W (2018) MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl Mater Interfaces 10(3):2328–2337. CrossRefGoogle Scholar
  5. 5.
    Huang TY, Kung CW, Liao YT, Kao SY, Cheng MS, Chang TH, Henzie J, Alamri HR, Alothman ZA, Yamauchi Y, Ho KC, Wu KCW (2017) Enhanced charge collection in MOF-525–PEDOT nanotube composites enable highly sensitive biosensing. Adv Sci 4(11):1700261. CrossRefGoogle Scholar
  6. 6.
    Torad NL, Hu M, Ishihara S, Sukegawa H, Belik AA, Imura M, Ariga K, Sakka Y, Yamauchi Y (2014) Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10(10):2096–2107. CrossRefGoogle Scholar
  7. 7.
    Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1(9):695–704. CrossRefGoogle Scholar
  8. 8.
    Chang Z, Yang DH, Xu J, Hu TL, Bu XH (2015) Flexible metal–organic frameworks: recent advances and potential applications. Adv Mater 27(36):5432–5441. CrossRefGoogle Scholar
  9. 9.
    Chen C-X, Wei Z, Jiang J-J, Fan Y-Z, Zheng S-P, Cao C-C, Li Y-H, Fenske D, Su C-Y (2016) Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew Chem 128(34):10086–10090. CrossRefGoogle Scholar
  10. 10.
    Vermoortele F, Ameloot R, Vimont A, Serre C, De Vos D (2011) An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chem Commun 47(5):1521–1523. CrossRefGoogle Scholar
  11. 11.
    Jabbari V, Veleta JM, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagran D (2016) Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783. CrossRefGoogle Scholar
  12. 12.
    Ahmed I, Jhung SH (2014) Composites of metal–organic frameworks: preparation and application in adsorption. Mater Today 17(3):136–146. CrossRefGoogle Scholar
  13. 13.
    Taylor JM, Dekura S, Ikeda R, Kitagawa H (2015) defect control to enhance proton conductivity in a metal–organic framework. Chem Mater 27(7):2286–2289. CrossRefGoogle Scholar
  14. 14.
    Kitagawa S (2017) Future porous materials. Acc Chem Res 50(3):514–516. CrossRefGoogle Scholar
  15. 15.
    Mounfield WP 3rd, Walton KS (2015) Effect of synthesis solvent on the breathing behavior of MIL-53(Al). J Colloid Interface Sci 447:33–39. CrossRefGoogle Scholar
  16. 16.
    Liang W, Coghlan CJ, Ragon F, Rubio-Martinez M, D’Alessandro DM, Babarao R (2016) Defect engineering of UiO-66 for CO2 and H2O uptake—a combined experimental and simulation study. Dalton Trans 45(11):4496–4500. CrossRefGoogle Scholar
  17. 17.
    Fischer M, Schwegler J, Paula C, Schulz PS, Hartmann M (2016) Direct synthesis of non-breathing MIL-53(Al)(ht) from a terephthalate-based ionic liquid as linker precursor. Dalton Trans 45(46):18443–18446. CrossRefGoogle Scholar
  18. 18.
    Ahnfeldt T, Gunzelmann D, Loiseau T, Hirsemann D, Senker J, Ferey G, Stock N (2009) Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. Inorg Chem 48(7):3057–3064. CrossRefGoogle Scholar
  19. 19.
    Nouar F, Devic T, Chevreau H, Guillou N, Gibson E, Clet G, Daturi M, Vimont A, Greneche JM, Breeze MI, Walton RI, Llewellyn PL, Serre C (2012) Tuning the breathing behaviour of MIL-53 by cation mixing. Chem Commun 48(82):10237–10239. CrossRefGoogle Scholar
  20. 20.
    Li Z, Wu YN, Li J, Zhang Y, Zou X, Li F (2015) The metal-organic framework MIL-53(Al) constructed from multiple metal sources: alumina, aluminum hydroxide, and boehmite. Chemistry 21(18):6913–6920. CrossRefGoogle Scholar
  21. 21.
    Liu Y, Her JH, Dailly A, Ramirez-Cuesta AJ, Neumann DA, Brown CM (2008) Reversible structural transition in MIL-53 with large temperature hysteresis. J Am Chem Soc 130(35):11813–11818. CrossRefGoogle Scholar
  22. 22.
    Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10(6):1373–1382. CrossRefGoogle Scholar
  23. 23.
    Liu J, Zhang F, Zou X, Yu G, Zhao N, Fan S, Zhu G (2013) Environmentally friendly synthesis of highly hydrophobic and stable MIL-53 MOF nanomaterials. Chem Commun 49(67):7430–7432. CrossRefGoogle Scholar
  24. 24.
    Shigematsu A, Yamada T, Kitagawa H (2011) Wide control of proton conductivity in porous coordination polymers. J Am Chem Soc 133(7):2034–2036. CrossRefGoogle Scholar
  25. 25.
    Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D (2014) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43(16):5594–5617. CrossRefGoogle Scholar
  26. 26.
    Bourrelly S, Moulin B, Rivera A, Maurin G, Devautour-Vinot S, Serre C, Devic T, Horcajada P, Vimont A, Clet G, Daturi M, Lavalley JC, Loera-Serna S, Denoyel R, Llewellyn PL, Ferey G (2010) Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr). J Am Chem Soc 132(27):9488–9498. CrossRefGoogle Scholar
  27. 27.
    Moran CM, Joshi JN, Marti RM, Hayes SE, Walton KS (2018) Structured growth of metal-organic framework MIL-53(Al) from solid aluminum carbide precursor. J Am Chem Soc 140(29):9148–9153. CrossRefGoogle Scholar
  28. 28.
    Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S (2009) Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater 120(3):325–330. CrossRefGoogle Scholar
  29. 29.
    Reimer N, Gil B, Marszalek B, Stock N (2012) Thermal post-synthetic modification of Al-MIL-53–COOH: systematic investigation of the decarboxylation and condensation reaction. CrystEngComm 14(12):4119–4125. CrossRefGoogle Scholar
  30. 30.
    Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal–organic frameworks. Chem Rev 114(20):10575–10612. CrossRefGoogle Scholar
  31. 31.
    Trung TK, Trens P, Tanchoux N, Bourrelly S, Llewellyn PL, Loera-Serna S, Serre C, Loiseau T, Fajula F, Ferey G (2008) Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr). J Am Chem Soc 130(50):16926–16932. CrossRefGoogle Scholar
  32. 32.
    Volkringer C, Loiseau T, Guillou N, Ferey G, Elkaim E, Vimont A (2009) XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). Dalton Trans 12:2241–2249. CrossRefGoogle Scholar
  33. 33.
    Salazar JM, Weber G, Simon JM, Bezverkhyy I, Bellat JP (2015) Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab initio calculations. J Chem Phys 142(12):124702. CrossRefGoogle Scholar
  34. 34.
    Yang D, Odoh SO, Wang TC, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Gates BC (2015) Metal–organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. J Am Chem Soc 137(23):7391–7396. CrossRefGoogle Scholar
  35. 35.
    Lieder C, Opelt S, Dyballa M, Henning H, Klemm E, Hunger M (2010) Adsorbate effect on AlO4(OH)(2) centers in the metal–organic framework MIL-53 investigated by solid-state NMR spectroscopy. J Phys Chem C 114(39):16596–16602. CrossRefGoogle Scholar
  36. 36.
    Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T (2013) Capture of iodine in highly stable metal-organic frameworks: a systematic study. Chem Commun 49(87):10320–10322. CrossRefGoogle Scholar
  37. 37.
    Qin FX, Jia SY, Liu Y, Li HY, Wu SH (2015) Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks. Desalin Water Treat 54(1):93–102. CrossRefGoogle Scholar
  38. 38.
    Boutin A, Couck S, Coudert FX, Serra-Crespo P, Gascon J, Kapteijn F, Fuchs AH, Denayer JFM (2011) Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption. Microporous Mesoporous Mater 140(1–3):108–113. CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Causserand C, Aimar P, Cravedi JP (2006) Removal of bisphenol A by a nanofiltration membrane in view of drinking water production. Water Res 40(20):3793–3799. CrossRefGoogle Scholar
  40. 40.
    Hou S, Lu H, Gu Y, Ma X, Wu Y, Wang Y, Li F (2017) Conversion of water-insoluble aluminum sources into metal–organic framework MIL-53(Al) and its adsorptive removal of roxarsone. Chin J Mater Res 31(7):495–501. Google Scholar
  41. 41.
    Zhan G, Zeng HC (2016) Alternative synthetic approaches for metal–organic frameworks: transformation from solid matters. Chem Commun 53(1):72–81. CrossRefGoogle Scholar
  42. 42.
    Liao P-Q, Zhu A-X, Zhang W-X, Zhang J-P, Chen X-M (2015) Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nat Commun 6:6350. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environmental Science and Technology, State Key Laboratory of Pollution Control and Resource ReuseTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Pollution Control and Ecological SecurityShanghaiPeople’s Republic of China
  3. 3.Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials ScienceEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations