Advertisement

Journal of Materials Science

, Volume 54, Issue 8, pp 6164–6173 | Cite as

Functionalization of magnetite–chitosan nanocomposite with molybdenum complexes: new efficient catalysts for epoxidation of olefins

  • Maryam MohammadikishEmail author
  • S. Hasan Hashemi
Chemical routes to materials

Abstract

Functionalization of magnetite–chitosan core–shell-type nanocomposite with molybdenum–Schiff base complex through a simple step-by-step path results in the preparation of new catalysts for the epoxidation of olefins. The functionalized nanocomposites were characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, scanning electron microscopy and vibrating-sample magnetometry. Finally, their abilities to catalyze the epoxidation of olefins with tert-butyl hydroperoxide in chloroform were evaluated. It was found that the prepared functionalized nanocomposites have high catalytic activities for heterogeneous epoxidation of olefins with epoxide as the main product in all cases. In particular, when the cyclooctene was employed as olefin, complete conversion and selectivity for epoxycyclooctene and high turnover frequency were obtained at 60 °C. The functionalized nanocomposites can be easily separated magnetically for reusing, and no activity loss was observed in five consecutive runs.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of Kharazmi University (Grant Number: 174461).

References

  1. 1.
    Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB (2006) Large-scale oxidations in the pharmaceutical industry. Chem Rev 106:2943–2989CrossRefGoogle Scholar
  2. 2.
    Habibi D, Faraji A, Arshadi M, Fierro J (2013) Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. J Mol Catal A Chem 372:90–99CrossRefGoogle Scholar
  3. 3.
    Leus K, Vanhaelewyn G, Bogaerts T, Liu Y-Y, Esquivel D, Callens F, Marin GB, Van Speybroeck V, Vrielinck H, Van Der Voort V (2013) Ti-functionalized NH2-MIL-47: an effective and stable epoxidation catalyst. Catal Today 208:97–105CrossRefGoogle Scholar
  4. 4.
    Titinchi SJ, Abbo HS (2013) Salicylaldiminato chromium complex supported on chemically modified silica as highly active catalysts for the oxidation of cyclohexene. Catal Today 204:114–124CrossRefGoogle Scholar
  5. 5.
    Cozzi PG (2004) Metal–Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421CrossRefGoogle Scholar
  6. 6.
    Sharma RK, Monga Y, Puri A, Gaba G (2013) Magnetite (Fe3O4) silica based organic–inorganic hybrid copper(ii) nanocatalyst: a platform for aerobic N-alkylation of amines. Green Chem 15:2800–2809CrossRefGoogle Scholar
  7. 7.
    Gawande MB, Shelke SN, Branco PS, Rathi A, Pandey RK (2012) Mixed metal MgO–ZrO2 nanoparticle-catalyzed O-tert-Boc protection of alcohols and phenols under solvent-free conditions. Appl Organomet Chem 26:395–400CrossRefGoogle Scholar
  8. 8.
    Pourjavadi A, Hosseini SH, Zohreh N, Bennett C (2014) Magnetic nanoparticles entrapped in the cross-linked poly (imidazole/imidazolium) immobilized Cu(II): an effective heterogeneous copper catalyst. RSC Adv 4:46418–46426CrossRefGoogle Scholar
  9. 9.
    Maksod E, Abd IH, Hegazy E, Kenawy S, Saleh TS (2010) An environmentally benign, highly efficient catalytic reduction of p-nitrophenol using a nano-sized nickel catalyst supported on silica-alumina. Adv Synth Catal 352:1169–1178CrossRefGoogle Scholar
  10. 10.
    Chang Y, Lv Y, Lu F, Zha F, Lei Z (2010) Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiff-base complexes. J Mol Catal A Chem 320:56–61CrossRefGoogle Scholar
  11. 11.
    Sharma S, Sinha S, Chand S (2012) Polymer anchored catalysts for oxidation of styrene using TBHP and molecular oxygen. Ind Eng Chem Res 51:8806–8814CrossRefGoogle Scholar
  12. 12.
    Li Z, Tang R, Liu G (2013) Immobilized into montmorillonite Mn(II) complexes of novel pyridine Schiff-base ligands and their catalytic reactivity in epoxidation of cyclohexene with O2. Catal Lett 143:592–599CrossRefGoogle Scholar
  13. 13.
    Rivallan M, Thomas S, Lepage M, Takagi N, Hirata H, Thibault-Starzyk F (2010) Evolution of platinum particles dispersed on zeolite upon oxidation catalysis and ageing. ChemCatChem 2:1599–1605CrossRefGoogle Scholar
  14. 14.
    Bansal VK, Thankachan PP, Prasad R (2010) Oxidation of benzyl alcohol and styrene using H2O2 catalyzed by tetraazamacrocycle complexes of Cu(II) and Ni(II) encapsulated in zeolite-Y. Appl Catal A 381:8–17CrossRefGoogle Scholar
  15. 15.
    Masteri-Farahani M, Kashef Z (2012) Synthesis and characterization of new magnetically recoverable molybdenum nanocatalyst for epoxidation of olefins. J Magn Magn Mater 324:1431–1434CrossRefGoogle Scholar
  16. 16.
    Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075CrossRefGoogle Scholar
  17. 17.
    Sun J, Yu G, Liu L, Li Z, Kan Q, Huo Q, Guan J (2014) Core–shell structured Fe3O4@SiO2 supported cobalt(ii) or copper(ii) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene. Catal Sci Technol 4:1246–1252CrossRefGoogle Scholar
  18. 18.
    Karimi B, Mansouri F, Mirzaei HM (2015) Recent applications of magnetically recoverable nanocatalysts in C–C and C–X coupling reactions. ChemCatChem 7:1736–1789CrossRefGoogle Scholar
  19. 19.
    Li L, Chen D, Zhang Y, Deng Z, Ren X, Meng X, Tang F, Ren J, Zhang L (2007) Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology 18:405102CrossRefGoogle Scholar
  20. 20.
    Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2008) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8CrossRefGoogle Scholar
  21. 21.
    Zhou Y-T, Nie H-L, Branford-White C, He Z-Y, Zhu L-M (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J Colloid Interface Sci 330:29–37CrossRefGoogle Scholar
  22. 22.
    Sasaki T, Iwasaki N, Kohno K, Kishimoto M, Majima T, Nishimura SI, Minami A (2008) Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res Part A 86:969–978CrossRefGoogle Scholar
  23. 23.
    Hong S, Chang Y, Rhee I (2010) Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phys Soc 56:868–873CrossRefGoogle Scholar
  24. 24.
    Kuo C-H, Liu Y-C, Chang C-MJ, Chen J-H, Chang C, Shieh C-J (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohyd Polym 87:2538–2545CrossRefGoogle Scholar
  25. 25.
    Xie W, Wang J (2012) Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass Bioenerg 36:373–380CrossRefGoogle Scholar
  26. 26.
    Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Mater Sci Ed 24:42–47CrossRefGoogle Scholar
  27. 27.
    Moore GK, Roberts GA (1981) Reactions of chitosan: 3. Preparation and reactivity of Schiff’s base derivatives of chitosan. Int J Biol Macromol 3:337–340CrossRefGoogle Scholar
  28. 28.
    Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, Vasi V (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9:247–252CrossRefGoogle Scholar
  29. 29.
    Binsu V, Nagarale R, Shahi VK, Ghosh P (2006) Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton-exchange membrane. React Funct Polym 66:1619–1629CrossRefGoogle Scholar
  30. 30.
    de Britto D, Assis OB (2007) A novel method for obtaining a quaternary salt of chitosan. Carbohydr Polym 69:305–310CrossRefGoogle Scholar
  31. 31.
    Hardy JJ, Hubert S, Macquarrie DJ, Wilson AJ (2004) Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem 6:53–56CrossRefGoogle Scholar
  32. 32.
    Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf A 212:219–226CrossRefGoogle Scholar
  33. 33.
    Topich J (1981) Ligand control of the redox properties of dioxomolybdenum(VI) coordination complexes. Inorg Chem 20:3704–3707CrossRefGoogle Scholar
  34. 34.
    Masteri-Farahani M, Tayyebi N (2011) A new magnetically recoverable nanocatalyst for epoxidation of olefins. J Mol Catal A Chem 348:83–87CrossRefGoogle Scholar
  35. 35.
    Cai X, Wang H, Zhang Q, Tong J, Lei Z (2014) Magnetically recyclable core–shell Fe3O4@chitosan-Schiff base complexes as efficient catalysts for aerobic oxidation of cyclohexene under mild conditions. J Mol Catal A Chem 383:217–224CrossRefGoogle Scholar
  36. 36.
    Saraiva MS, Nunes CD, Nunes TG, Calhorda MJ (2013) Mo(II) complexes of 8-aminoquinoline and their immobilization in MCM-41. Appl Catal A 455:172–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of ChemistryKharazmi UniversityTehranIran

Personalised recommendations