Journal of Materials Science

, Volume 54, Issue 8, pp 6684–6698 | Cite as

Design and fabrication of a transparent, tough and UVC screening material as a substitute for glass substrate in display devices

  • Uday Shankar
  • Deepa Oberoi
  • Srikanth Avasarala
  • Shahajad Ali
  • Anasuya BandyopadhyayEmail author


A series of copolymers P(MMAx-co-ANy) constituting of methyl methacrylate (MMA) and acrylonitrile (AN) monomer unit and a homopolymer PMMA have been synthesized by solution polymerization method. The foremost purpose of this research is to obtain tough, transparent, lightweight materials, which will be able to substitute glass in all display devices. Complete characterizations of all the polymers have been carried out along with their absorption properties to understand the effect of introduction of AN comonomer unit on MMA backbone. Among all synthesized copolymers, P(MMA70-co-AN30) is found to be the best composition based on both mechanical and optical properties compared to the same of the other polymers. The optical study of this polymer shows only 5% transmittance at wavelength 256 nm, which is almost equivalent to UV-shielding properties of glass, and this selective UV-screening is achieved without addition of any additives or fillers in copolymer matrix.



Financial support received from the Science and Engineering Research Board, DST New Delhi (under the Grant EMR/2016/001994) is acknowledged. The first author is thankful to MHRD for his fellowship. The second author is thankful to CSIR for the financial support. The first author is also highly thankful to Mr. Gopal Kumar Gautam of IIT Delhi and Mr. Anil Kumar Padhan of IIT Ropar for their support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10853_2018_3285_MOESM1_ESM.doc (524 kb)
Supplementary material 1 (DOC 524 kb)


  1. 1.
    Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27:2–18. CrossRefGoogle Scholar
  2. 2.
    Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE 10:45–57Google Scholar
  3. 3.
    Granqvist CG (1993) Transparent conductive electrodes for electrochromic devices: a review. Appl Phys A Solids Surfaces 57:19–24. CrossRefGoogle Scholar
  4. 4.
    Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915. CrossRefGoogle Scholar
  5. 5.
    Minami K (2005) Optical plastics. In: Bäumer S (ed) Handbook of plastic optics. Wiley, New York, pp 123–160Google Scholar
  6. 6.
    Gundlach DJ (2007) Low power, high impact. Nat Mater 6:173–174. CrossRefGoogle Scholar
  7. 7.
    Liu B, Zhang Y-Y, Zhang X-H et al (2016) Fixation of carbon dioxide concurrently or in tandem with free radical polymerization for highly transparent polyacrylates with specific UV absorption. Polym Chem 7:3731–3739. CrossRefGoogle Scholar
  8. 8.
    Eric Shen D, Österholm AM, Reynolds JR (2015) Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. J Mater Chem C 3:9715–9725. CrossRefGoogle Scholar
  9. 9.
    Wang H, Barrett M, Duane B et al (2018) Materials and processing of polymer-based electrochromic devices. Mater Sci Eng B Solid-State Mater Adv Technol 228:167–174. CrossRefGoogle Scholar
  10. 10.
    Bulloch RH, Reynolds JR (2016) Photostability in dioxyheterocycle electrochromic polymers. J Mater Chem C 4:123–160. CrossRefGoogle Scholar
  11. 11.
    Gustafsson G, Treacy GM, Cao Y et al (1993) The “plastic” led: a flexible light-emitting device using a polyaniline transparent electrode. Synth Met 57:4123–4127CrossRefGoogle Scholar
  12. 12.
    Fungo F, Jenekhe SA, Bard AJ (2003) Plastic electrochromic devices: electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor–acceptor polymer. Chem Mater 15:1264–1272. CrossRefGoogle Scholar
  13. 13.
    De Paoli MA, Nogueira AF, Machado DA, Longo C (2001) All-polymeric electrochromic and photoelectrochemical devices: new advances. Electrochim Acta 46:4243–4249CrossRefGoogle Scholar
  14. 14.
    Soo Choi D, Ho Han S, Kim H et al (2014) Flexible electrochromic films based on CVD-graphene electrodes. Nanotechnology 25:395702–395708. CrossRefGoogle Scholar
  15. 15.
    Mecerreyes D, Marcilla R, Ochoteco E et al (2004) A simplified all-polymer flexible electrochromic device. Electrochim Acta 49:3555–3559CrossRefGoogle Scholar
  16. 16.
    Xu M, Qi J, Li F, Zhang Y (2018) Transparent and flexible tactile sensors based on graphene films designed for smart panels. J Mater Sci 53:9589–9597. CrossRefGoogle Scholar
  17. 17.
    Lewis BG, Paine DC (2000) Applications and processing of transparent oxides. MRS Bull 25:22–27CrossRefGoogle Scholar
  18. 18.
    Moreno I, Navascues N, Arruebo M et al (2013) Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites. Nanotechnology 24:275603–275613. CrossRefGoogle Scholar
  19. 19.
    Kim YS, Park JH, Choi DH et al (2007) ITO/Au/ITO multilayer thin films for transparent conducting electrode applications. Appl Surf Sci 254:1524–1527. CrossRefGoogle Scholar
  20. 20.
    Kajiura S, Hiraoka T, Yoshizumi A (1999) Transparent conductive substrate and display apparatus. U.S. Patent 5,907,382Google Scholar
  21. 21.
    Memarian H, Patel H (2004) Transparent conductive stratiform coating of indium tin oxide. U.S. Patent 6,743,488Google Scholar
  22. 22.
    Demir MM, Koynov K, Akbey Ü et al (2007) Optical properties of composites of PMMA and surface-modified zincite nanoparticles. Macromolecules 40:1089–1100. CrossRefGoogle Scholar
  23. 23.
    Bhandari S, Singha NK, Khastgir D (2014) Preferential distribution of polyaniline in different phases of acrylate triblock copolymer. Mater Express 4:115–124. CrossRefGoogle Scholar
  24. 24.
    Arlindo EPS, Lucindo JA, Bastos CMO et al (2012) Electrical and optical properties of conductive and transparent ITO @ PMMA nanocomposites. J Phys Chem C 116:12946–12952CrossRefGoogle Scholar
  25. 25.
    Lu G, Van Driel WD, Fan X et al (2016) Colour shift and mechanism investigation on the PMMA diffuser used in LED-based luminaires. Opt Mater (Amst) 54:282–287. CrossRefGoogle Scholar
  26. 26.
    Hu J, Zhou Y, Sheng X (2015) Optical diffusers with enhanced properties based on novel polysiloxane@ CeO 2@ PMMA fillers. J Mater Chem C 3:2223–2230CrossRefGoogle Scholar
  27. 27.
    Hayashida K, Takatani Y (2016) Poly(methyl methacrylate)-grafted ZnO nanocomposites with variable dielectric constants by UV light irradiation. J Mater Chem C 4:3640–3645. CrossRefGoogle Scholar
  28. 28.
    Chopra KL, Paulson PD, Dutta V (2004) Thin-film solar cells: an overview. Prog Photovolt Res Appl 12:69–92. CrossRefGoogle Scholar
  29. 29.
    Lee UJ, Lee SH, Yoon JJ et al (2013) Surface interpenetration between conducting polymer and PET substrate for mechanically reinforced ITO-free flexible organic solar cells. Sol Energy Mater Sol Cells 108:50–56. CrossRefGoogle Scholar
  30. 30.
    Grego S, Lewis J, Vick E et al (2004) Mechanical evaluation of permeation barriers for flexible OLED displays. In: 17th annual meeting, vol 1. IEEE, pp 340–341Google Scholar
  31. 31.
    Nakada H (2007) The status of development of organic light emittign diodes/organic thin-film transistors. J Photopolym Sci Technol 20:35–38CrossRefGoogle Scholar
  32. 32.
    Yoshida A, Fujimura S, Miyake T et al (2003) 21.1: Invited Paper: 3-inch full-color OLED display using a plastic substrate. SID Symp Dig Tech Pap 34:856–859. CrossRefGoogle Scholar
  33. 33.
    Kane MG, Campi J, Hammond MS et al (2000) Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Device Lett 21:534–536. CrossRefGoogle Scholar
  34. 34.
    Sheraw CD, Zhou L, Huang JR et al (2002) Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl Phys Lett 80:1088–1090. CrossRefGoogle Scholar
  35. 35.
    Gelinck GH, Geuns TCT, De Leeuw DM (2003) High-performance all-polymer integrated circuits high-performance all-polymer integrated circuits. Appl Phys Lett 1487:3–6Google Scholar
  36. 36.
    Dimitrakopoulos CD, Purushothaman S, Kymissis J et al (1999) Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science (80-) 283:822–824. CrossRefGoogle Scholar
  37. 37.
    Argun AA, Cirpan A, Reynolds JR (2003) The first truly all-polymer electrochromic devices. Adv Mater 15:1338–1341. CrossRefGoogle Scholar
  38. 38.
    Gazotti WA, Casalbore-Miceli G, Geri A et al (1998) An all-plastic and flexible electrochromic device based on elastomeric blends. Adv Mater 10:1522–1525.;2-U CrossRefGoogle Scholar
  39. 39.
    Gutierrez MP, Zohdi TI (2014) Effective reflectivity and heat generation in sucrose and PMMA mixtures. Energy Build 71:95–103. CrossRefGoogle Scholar
  40. 40.
    Cairns DR, Crawford GP (2005) Electromechanical properties of transparent conducting substrates for flexible electronic displays. Proc IEEE 93:1451–1458. CrossRefGoogle Scholar
  41. 41.
    Singhal A, Dubey KA, Bhardwaj YK et al (2013) UV-shielding transparent PMMA/In2O3 nanocomposite films based on In2O3 nanoparticles. RSC Adv 3:20913. CrossRefGoogle Scholar
  42. 42.
    Clayton LM, Sikder AK, Kumar A et al (2005) Transparent poly(methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Funct Mater 15:101–106. CrossRefGoogle Scholar
  43. 43.
    Stelzig SH, Klapper M, Müllen K (2008) A simple and efficient route to transparent nanocomposites. Adv Mater 20:929–932. CrossRefGoogle Scholar
  44. 44.
    Schmid A, Tonnar J, Armes SP (2008) A new highly efficient route to polymer-silica colloidal nanocomposite particles. Adv Mater 20:3331–3336. CrossRefGoogle Scholar
  45. 45.
    Li Y-Q, Fu S-Y, Yang Y, Mai Y-W (2008) Facile synthesis of highly transparent polymer nanocomposites by introduction of core-shell structured nanoparticles. Chem Mater 20:2637–2643. CrossRefGoogle Scholar
  46. 46.
    Tang C, Bombalski L, Kruk M et al (2008) Nanoporous carbon films from “hairy” polyacrylonitrile-grafted colloidal silica nanoparticles. Adv Mater 20:1516–1522. CrossRefGoogle Scholar
  47. 47.
    Elim HI, Cai B, Kurata Y et al (2009) Refractive index control and rayleigh scattering properties of transparent TiO2 nanohybrid polymer. J Phys Chem B 113:10143–10148. CrossRefGoogle Scholar
  48. 48.
    Koziej D, Fischer F, Kränzlin N et al (2009) Nonaqueous TiO2 nanoparticle synthesis: a versatile basis for the fabrication of self-supporting, transparent, and UV-absorbing composite films. ACS Appl Mater Interfaces 1:1097–1104. CrossRefGoogle Scholar
  49. 49.
    Lü C, Cheng Y, Liu Y et al (2006) A facile route to ZnS-polymer nanocomposite optical materials with high nanophase content via γ-ray irradiation initiated bulk polymerization. Adv Mater 18:1188–1192. CrossRefGoogle Scholar
  50. 50.
    Lü C, Gao J, Fu Y et al (2008) A ligand exchange route to highly luminescent surface-functionalized ZnS nanoparticles and their transparent polymer nanocomposites. Adv Funct Mater 18:3070–3079. CrossRefGoogle Scholar
  51. 51.
    Ge J, Zeng X, Tao X et al (2010) Preparation and characterization of PS-PMMA/ZnO nanocomposite films with novel properties of high transparency and UV-shielding capacity. J Appl Polym Sci 118:1507–1512Google Scholar
  52. 52.
    Chae DW, Kim BC (2005) Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym Adv Technol 16:846–850. CrossRefGoogle Scholar
  53. 53.
    Li S, Toprak MS, Jo YS et al (2007) Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv Mater 19:4347–4352. CrossRefGoogle Scholar
  54. 54.
    Lü N, Lü X, Jin X, Lü C (2007) Preparation and characterization of UV-curable ZnO/polymer nanocomposite films. Polym Int 56:138–143CrossRefGoogle Scholar
  55. 55.
    Zhang Y, Wang X, Liu Y et al (2012) Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability. J Mater Chem 22:11971–11977. CrossRefGoogle Scholar
  56. 56.
    Liao W, Gu A, Liang G, Yuan L (2012) New high performance transparent UV-curable poly(methyl methacrylate) grafted ZnO/silicone-acrylate resin composites with simultaneously improved integrated performance. Colloids Surf A Physicochem Eng Asp 396:74–82. CrossRefGoogle Scholar
  57. 57.
    Zhang Y, Zhuang S, Xu X, Hu J (2013) Transparent and UV-shielding ZnO@PMMA nanocomposite films. Opt Mater (Amst) 36:169–172. CrossRefGoogle Scholar
  58. 58.
    Gupta N, Rai R, Sikder A et al (2016) Design and development of a poly(acrylonitrile-co-methyl methacrylate) copolymer to improve the viscoelastic and surface properties critical to scratch resistance. RSC Adv 6:37933–37937. CrossRefGoogle Scholar
  59. 59.
    Mohy Eldin MS, Elaassar MR, Elzatahry AA, Al-Sabah MMB (2017) Poly (acrylonitrile-co-methyl methacrylate) nanoparticles: I. Preparation and characterization. Arab J Chem 10:1153–1166. CrossRefGoogle Scholar
  60. 60.
    Dong L, Liu X, Xiong Z et al (2018) Preparation of UV-blocking poly(vinylidene fluoride) films through SI-AGET ATRP using a colorless polydopamine initiator layer. Ind Eng Chem Res 57:12662–12669. CrossRefGoogle Scholar
  61. 61.
    Davaran S, Hanaee J, Khosravi A (1999) Release of 5-amino salicylic acid from acrylic type polymeric prodrugs designed for colon-specific drug delivery. J Control Release 58:279–287. CrossRefGoogle Scholar
  62. 62.
    Rao MM, Liu JS, Li WS et al (2008) Preparation and performance analysis of PE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application. J Membr Sci 322:314–319. CrossRefGoogle Scholar
  63. 63.
    Korobeinyk AV, Whitby RLD, Mikhalovsky SV (2012) High temperature oxidative resistance of polyacrylonitrile- methylmethacrylate copolymer powder converting to a carbonized monolith. Eur Polym J 48:97–104. CrossRefGoogle Scholar
  64. 64.
    Vargun E, Abaci U, Sankir M et al (2014) Effect of LiClO4 salt on dielectric properties of acrylonitrile-methyl methacrylate and acrylonitrile-isobutyl methacrylate copolymers. J Macromol Sci A Pure Appl Chem 51:156–164. CrossRefGoogle Scholar
  65. 65.
    Nunes RW, Martin JR, Johnson JF (1982) Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polym Eng Sci 22:205–228. CrossRefGoogle Scholar
  66. 66.
    Odian G (2004) Chain copolymerization. In: Odian G (ed) Principles of polymerization. Wiley, New York, pp 464–541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Polymer and Process EngineeringIIT RoorkeeSaharanpurIndia

Personalised recommendations