Advertisement

Review: titanium–titanium boride composites

  • K. MorsiEmail author
Review
  • 17 Downloads

Abstract

Titanium in situ reinforced with titanium boride (TiBw) has garnered significant attention as one of the most promising titanium composites today. A significant number of processing approaches have been reported on the fabrication of these unique composites. This brief review provides an update on recent activities within the area focusing largely on research conducted over the past 5 years. Approaches discussed include bulk deformation processes such as rolling, 2D forging, equal channel angular pressing, (laser and non-laser-based) additive manufacturing, and new microstructural designs implemented for this composite system. Moreover, the potential of this composite as a biomaterial is also discussed.

Notes

Acknowledgement

The author would like to thank San Diego State University for granting his sabbatical leave which provided the ability to write this review paper.

References

  1. 1.
    Chaudhari R, Bauri R (2018) A novel functionally gradient Ti/TiB/TiC hybrid composite with wear resistant surface layer. J Alloys Compd 744:438–444.  https://doi.org/10.1016/j.jallcom.2018.02.058 CrossRefGoogle Scholar
  2. 2.
    Abkowitz S, Abkowitz SM, Fisher H, Schwartz PJ (2004) CermeTi® discontinuously reinforced Ti-matrix composites: manufacturing, properties, and applications. JOM 56:37–41.  https://doi.org/10.1007/s11837-004-0126-2 CrossRefGoogle Scholar
  3. 3.
    Attar H, Bönisch M, Calin M et al (2014) Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties. Acta Mater 76:13–22.  https://doi.org/10.1016/j.actamat.2014.05.022 CrossRefGoogle Scholar
  4. 4.
    Zhang C, Li X, Zhang S et al (2017) Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol% (TiBw + TiCp)/Ti composites. Mater Sci Eng A 684:645–651.  https://doi.org/10.1016/j.msea.2016.12.113 CrossRefGoogle Scholar
  5. 5.
    Gaisin RA, Imayev VM, Imayev RM (2017) Effect of hot forging on microstructure and mechanical properties of near α titanium alloy/TiB composites produced by casting. J Alloys Compd 723:385–394.  https://doi.org/10.1016/j.jallcom.2017.06.287 CrossRefGoogle Scholar
  6. 6.
    Qiu P, Li H, Sun X et al (2017) Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiB + TiC + La2O3)/Ti6Al4V composites. J Alloys Compd 699:874–881.  https://doi.org/10.1016/j.jallcom.2016.12.418 CrossRefGoogle Scholar
  7. 7.
    Xiang J, Han Y, Li J et al (2017) Microstructure characteristics of ECAP-processed (TiB + La2O3)/Ti–6Al–4V composites. J Alloys Compd 726:57–66.  https://doi.org/10.1016/j.jallcom.2017.07.294 CrossRefGoogle Scholar
  8. 8.
    Ghesmati Tabrizi S, Sajjadi SA, Babakhani A, Lu W (2015) Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A 624:271–278.  https://doi.org/10.1016/j.msea.2014.11.036 CrossRefGoogle Scholar
  9. 9.
    Ozerov MS, Klimova MV, Stepanov ND, Zherebtsov SV (2018) Microstructure evolution of a TI/TIB metal-matrix composite during high-temperature deformation. Mater Phys Mech 38:54–63.  https://doi.org/10.18720/MPM.3812018_8 Google Scholar
  10. 10.
    Patel VV, El-Desouky A, Garay JE, Morsi K (2009) Pressure-less and current-activated pressure-assisted sintering of titanium dual matrix composites: effect of reinforcement particle size. Mater Sci Eng A 507:161–166CrossRefGoogle Scholar
  11. 11.
    Song X, Wang L, Niinomi M et al (2015) Fatigue characteristics of a biomedical β-type titanium alloy with titanium boride. Mater Sci Eng A 640:154–164.  https://doi.org/10.1016/j.msea.2015.05.078 CrossRefGoogle Scholar
  12. 12.
    Makau FM, Morsi K, Gude N et al (2013) Viability of Titanium-Titanium Boride Composite as a Biomaterial. ISRN Biomater.  https://doi.org/10.5402/2013/970535 Google Scholar
  13. 13.
    Zhang L-C, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18:463–475.  https://doi.org/10.1002/adem.201500419 CrossRefGoogle Scholar
  14. 14.
    Tjong SC, Mai YW (2008) Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos Sci Technol 68:583–601CrossRefGoogle Scholar
  15. 15.
    Morsi K, Patel VV (2007) Processing and properties of titanium-titanium boride (TiBw) matrix composites—a review. J Mater Sci 42:2037–2047.  https://doi.org/10.1007/s10853-006-0776-2 CrossRefGoogle Scholar
  16. 16.
    German RM (2005) Powder metallurgy and particulate materials processing: the processes, materials, products, properties and applications. Metal Powder Industries Federation, PrincetonGoogle Scholar
  17. 17.
    Selvakumar M, Chandrasekar P, Mohanraj M et al (2015) Role of powder metallurgical processing and TiB reinforcement on mechanical response of Ti–TiB composites. Mater Lett 144:58–61.  https://doi.org/10.1016/j.matlet.2014.12.126 CrossRefGoogle Scholar
  18. 18.
    Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Enhanced growth of intermetallic phases in the Ni-Ti system by current effects. Acta Mater 51:4487–4495.  https://doi.org/10.1016/S1359-6454(03)00284-2 CrossRefGoogle Scholar
  19. 19.
    Ozerov M, Stepanov N, Kolesnikov A et al (2017) Brittle-to-ductile transition in a Ti–TiB metal-matrix composite. Mater Lett 187:28–31.  https://doi.org/10.1016/j.matlet.2016.10.060 CrossRefGoogle Scholar
  20. 20.
    Imayev V, Gaisin R, Gaisina E et al (2014) Effect of hot forging on microstructure and tensile properties of Ti–TiB based composites produced by casting. Mater Sci Eng A 609:34–41.  https://doi.org/10.1016/j.msea.2014.04.091 CrossRefGoogle Scholar
  21. 21.
    Sahay S, Ravichandran K, Atri R et al (1999) Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers. J Mater Res 14:4214–4223CrossRefGoogle Scholar
  22. 22.
    Koo MY, Park JS, Park MK et al (2012) Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiB w/Ti–6Al-4V composites. Scr Mater 66:487–490CrossRefGoogle Scholar
  23. 23.
    Morsi K, Patel VV, Moon KS, Garay JE (2008) Current-activated pressure-assisted sintering (CAPAS) and nanoindentation mapping of dual matrix composites. J Mater Sci 43:4050–4056.  https://doi.org/10.1007/s10853-007-2225-2 CrossRefGoogle Scholar
  24. 24.
    Panda KB, Chandran KSR (2006) First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater 54:1641–1657.  https://doi.org/10.1016/j.actamat.2005.12.003 CrossRefGoogle Scholar
  25. 25.
    Lutjering G, Williams J (2007) Titanium, 2nd edn. Springer, BerlinGoogle Scholar
  26. 26.
    Fan Z, Miodownik A, Chandrasekaran L, Ward-Close M (1994) The Young’ s moduli of in situ Ti/TiB composites obtained by rapid solidification processing. J Mater Sci 29:1127–1134.  https://doi.org/10.1007/BF00351442 CrossRefGoogle Scholar
  27. 27.
    Gorsse S, Chaminade J, Le Petitcorps Y (1998) In situ preparation of titanium base composites reinforced by TiB single crystals using a powder metallurgy technique. Compos Part A Appl Sci Manuf 29:1229–1234CrossRefGoogle Scholar
  28. 28.
    Gorsse S, Miracle DB (2003) Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater 51:2427–2442.  https://doi.org/10.1016/S1359-6454(02)00510-4 CrossRefGoogle Scholar
  29. 29.
    Dubey S, Soboyejo WO, Srivatsan TS (1997) Deformation and fracture properties of damage tolerant in-situ titanium matrix composites. Appl Compos Mater 4:361–374.  https://doi.org/10.1109/SMC.2015.517 Google Scholar
  30. 30.
    Feng H, Zhou Y, Jia D, Meng Q (2004) Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Compos Sci Technol 64:2495–2500CrossRefGoogle Scholar
  31. 31.
    Cox H (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72–79CrossRefGoogle Scholar
  32. 32.
    Soboyejo WO, Lederich RJ, Sastry SML (1994) Mechanical behavior of damage tolerant TiB whisker-reinforced in situ titanium matrix composites. Acta Metall Mater 42:2579–2591.  https://doi.org/10.1016/0956-7151(94)90199-6 CrossRefGoogle Scholar
  33. 33.
    Taya M, Arsenault RJ (1987) Comparison between a shear lag type model and an eshelby type model in predicting the mechanical properties of a short fiber composite. Scr Metall 21:349–354CrossRefGoogle Scholar
  34. 34.
    George R, Kashyap KT, Rahul R, Yamdagni S (2005) Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater 53:1159–1163.  https://doi.org/10.1016/j.scriptamat.2005.07.022 CrossRefGoogle Scholar
  35. 35.
    Lu H, Zhang D, Gabbitas B et al (2014) Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture. J Alloys Compd 606:262–268CrossRefGoogle Scholar
  36. 36.
    Zhang W, Wang M, Chen W et al (2015) Evolution of inhomogeneous reinforced structure in TiBw/Ti–6AL–4V composite prepared by pre-sintering and canned β extrusion. Mater Des 88:471–477CrossRefGoogle Scholar
  37. 37.
    Guo X, Lu W, Wang L, Qin J (2014) A research on the creep properties of titanium matrix composites rolled with different deformation degrees. Mater Des 63:50–55.  https://doi.org/10.1016/j.matdes.2014.05.063 CrossRefGoogle Scholar
  38. 38.
    Ghesmati Tabrizi S, Sajjadi SA, Babakhani A, Lu W (2017) Analytical and experimental investigation of the effect of SPS and hot rolling on the microstructure and flexural behavior of Ti6Al4V matrix reinforced with in situ TiB and TiC. J Alloys Compd 692:734–744.  https://doi.org/10.1016/j.jallcom.2016.09.026 CrossRefGoogle Scholar
  39. 39.
    Li S, Kondoh K, Imai H et al (2016) Strengthening behavior of in situ-synthesized (TiC-TiB)/Ti composites by powder metallurgy and hot extrusion. Mater Des 95:127–132.  https://doi.org/10.1016/j.matdes.2016.01.092 CrossRefGoogle Scholar
  40. 40.
    Zhang J, Ke W, Ji W et al (2015) Microstructure and properties of insitu titanium boride (TiB)/titanium (TI) composites. Mater Sci Eng A 648:158–163.  https://doi.org/10.1016/j.msea.2015.09.067 CrossRefGoogle Scholar
  41. 41.
    Tsang HT, Chao CG, Ma C (1997) Tensile and creep properties of in situ TiB/Ti MMC. Scr Mater 37:1359–1365CrossRefGoogle Scholar
  42. 42.
    Imayev VM, Gaisin RA, Imayev RM (2015) Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si. Mater Sci Eng A 641:71–83CrossRefGoogle Scholar
  43. 43.
    Hong M, Wu D, Chen RS, Du XH (2014) Ductility enhancement of EW75 alloy by multi-directional forging. J Magnes Alloy 2:317–324.  https://doi.org/10.1016/j.jma.2014.11.005 CrossRefGoogle Scholar
  44. 44.
    Zhang CJ, Qu JP, Wu J et al (2018) A titanium composite with dual reinforcements of micrometer sized TiB and submicrometer sized Y2O3. Mater Lett 233:242–245.  https://doi.org/10.1016/j.matlet.2018.09.012 CrossRefGoogle Scholar
  45. 45.
    Morsi K, Patel VV, Naraghi S, Garay JE (2008) Processing of titanium-titanium boride dual matrix composites. J Mater Process Technol 196:236–242CrossRefGoogle Scholar
  46. 46.
    Wang B, Huang LJ, Geng L, Yu ZS (2017) Modification of microstructure and tensile property of TiBw/near-α Ti composites by tailoring TiBw distribution and heat treatment. J Alloys Compd 690:424–430.  https://doi.org/10.1016/j.jallcom.2016.08.138 CrossRefGoogle Scholar
  47. 47.
    Cai C, Song B, Qiu C et al (2017) Hot isostatic pressing of in situ TiB/Ti–6Al–4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties. J Alloys Compd 710:364–374.  https://doi.org/10.1016/j.jallcom.2017.03.160 CrossRefGoogle Scholar
  48. 48.
    Hu H, Huang L, Geng L et al (2014) Oxidation behavior of TiB-whisker-reinforced Ti60 alloy composites with three-dimensional network architecture. Corros Sci 85:7–14.  https://doi.org/10.1016/j.corsci.2014.03.033 CrossRefGoogle Scholar
  49. 49.
    Huang L, Qian M, Liu Z et al (2018) In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites. J Alloys Compd 735:2640–2645.  https://doi.org/10.1016/j.jallcom.2017.11.238 CrossRefGoogle Scholar
  50. 50.
    Liu BX, Huang LJ, Geng L et al (2014) Effects of reinforcement volume fraction on tensile behaviors of laminated Ti–TiBw/Ti composites. Mater Sci Eng A 610:344–349.  https://doi.org/10.1016/j.msea.2014.05.057 CrossRefGoogle Scholar
  51. 51.
    Morsi K, Patel VV, Naraghi S, Garay JE (2008) Processing of titanium-titanium boride dual matrix composites. J Mater Process Technol 196:236–242.  https://doi.org/10.1016/j.jmatprotec.2007.05.047 CrossRefGoogle Scholar
  52. 52.
    Deng X, Patterson BR, Chawla KK et al (2002) Microstructure/hardness relationship in a dual composite. J Mater Sci Lett 21:707–709.  https://doi.org/10.1023/A:1015733005094 CrossRefGoogle Scholar
  53. 53.
    Morsi K, Esawi AMK, Borah P et al (2010) Properties of single and dual matrix aluminum-carbon nanotube composites processed via spark plasma extrusion (SPE). Mater Sci Eng A 527:5686–5690.  https://doi.org/10.1016/j.msea.2010.05.081 CrossRefGoogle Scholar
  54. 54.
    Liu BX, Huang LJ, Geng L et al (2014) Gradient grain distribution and enhanced properties of novel laminated Ti–TiBw/Ti composites by reaction hot-pressing. Mater Sci Eng A 595:257–265.  https://doi.org/10.1016/j.msea.2013.12.013 CrossRefGoogle Scholar
  55. 55.
    Liu BX, Huang LJ, Wang B, Geng L (2014) Effect of pure Ti thickness on the tensile behavior of laminated Ti–TiBw/Ti composites. Mater Sci Eng A 617:115–120.  https://doi.org/10.1016/j.msea.2014.08.065 CrossRefGoogle Scholar
  56. 56.
    Qin S, Cui X, Tian Z et al (2017) Synthesis and mechanical properties of innovative (TiB/Ti)-Ti3Al micro-laminated composites. J Alloys Compd 700:122–129.  https://doi.org/10.1016/j.jallcom.2017.01.047 CrossRefGoogle Scholar
  57. 57.
    Attar H, Ehtemam-Haghighi S, Kent D, Dargusch MS (2018) Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int J Mach Tools Manuf 133:85–102.  https://doi.org/10.1016/j.ijmachtools.2018.06.003 CrossRefGoogle Scholar
  58. 58.
    Hu Y, Cong W, Wang X et al (2018) Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening. Compos Part B Eng 133:91–100.  https://doi.org/10.1016/j.compositesb.2017.09.019 CrossRefGoogle Scholar
  59. 59.
    Hu Y, Zhao B, Ning F et al (2017) In-situ ultrafine three-dimensional quasi-continuous network microstructural TiB reinforced titanium matrix composites fabrication using laser engineered net shaping. Mater Lett 195:116–119.  https://doi.org/10.1016/j.matlet.2017.02.112 CrossRefGoogle Scholar
  60. 60.
    Attar H, Prashanth KG, Zhang LC et al (2015) Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol 31:1001–1005.  https://doi.org/10.1016/j.jmst.2015.08.007 CrossRefGoogle Scholar
  61. 61.
    Attar H, Bönisch M, Calin M et al (2014) Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J Mater Res 29:1941–1950.  https://doi.org/10.1557/jmr.2014.122 CrossRefGoogle Scholar
  62. 62.
    Sheydaeian E, Toyserkani E (2018) A new approach for fabrication of titanium-titanium boride periodic composite via additive manufacturing and pressure-less sintering. Compos Part B Eng 138:140–148.  https://doi.org/10.1016/j.compositesb.2017.11.035 CrossRefGoogle Scholar
  63. 63.
    Bermingham MJ, Kent D, Zhan H et al (2015) Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions. Acta Mater 91:289–303.  https://doi.org/10.1016/j.actamat.2015.03.035 CrossRefGoogle Scholar
  64. 64.
    Affatato S, Ruggiero A, Merola M (2015) Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos Part B Eng 83:276–283.  https://doi.org/10.1016/j.compositesb.2015.07.019 CrossRefGoogle Scholar
  65. 65.
    Morsi K, Keshavan H, Bal S (2004) Hot pressing of graded ultrafine-grained alumina bioceramics. Mater Sci Eng A 386:384–389CrossRefGoogle Scholar
  66. 66.
    Samuel S, Nag S, Scharf TW, Banerjee R (2008) Wear resistance of laser-deposited boride reinforced Ti–Nb–Zr–Ta alloy composites for orthopedic implants. Mater Sci Eng C 28:414–420.  https://doi.org/10.1016/j.msec.2007.04.029 CrossRefGoogle Scholar
  67. 67.
    Ege D, Duru İ, Kamali AR, Boccaccini AR (2017) Nitride, zirconia, alumina, and carbide coatings on Ti6Al4V femoral heads: effect of deposition techniques on mechanical and tribological properties. Adv Eng Mater 19:49–54.  https://doi.org/10.1002/adem.201700177 Google Scholar
  68. 68.
    Chen Y, Zhang J, Dai N et al (2017) Corrosion behaviour of selective laser melted Ti-TiB biocomposite in simulated body fluid. Electrochim Acta 232:89–97.  https://doi.org/10.1016/J.ELECTACTA.2017.02.112 CrossRefGoogle Scholar
  69. 69.
    Toptan F, Rego A, Alves AC, Guedes A (2016) Corrosion and tribocorrosion behavior of Ti–B4C composite intended for orthopaedic implants. J Mech Behav Biomed Mater 61:152–163.  https://doi.org/10.1016/j.jmbbm.2016.01.024 CrossRefGoogle Scholar
  70. 70.
    Das M, Bhattacharya K, Dittrick SA et al (2014) In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in vitro biocompatibility. J Mech Behav Biomed Mater 29:259–271.  https://doi.org/10.1016/j.jmbbm.2013.09.006 CrossRefGoogle Scholar
  71. 71.
    Kaczmarek M, Jurczyk MU, Miklaszewski A et al (2016) In vitro biocompatibility of titanium after plasma surface alloying with boron. Mater Sci Eng C 69:1240–1247.  https://doi.org/10.1016/j.msec.2016.08.006 CrossRefGoogle Scholar
  72. 72.
    Bahl S, Raj S, Vanamali S et al (2014) Effect of boron addition and processing of Ti–6Al–4V on corrosion behavior and biocompatibility. Mater Technol 29:B64–B68CrossRefGoogle Scholar
  73. 73.
    Majumdar P, Singh SB, Dhara S, Chakraborty M (2015) Influence of boron addition to Ti–13Zr–13Nb alloy on MG63 osteoblast cell viability and protein adsorption. Mater Sci Eng C 46:62–68.  https://doi.org/10.1016/j.msec.2014.10.012 CrossRefGoogle Scholar
  74. 74.
    Majumdar P, Singh SB, Dhara S, Chakraborty M (2012) Influence of in situ TiB reinforcements and role of heat treatment on mechanical properties and biocompatibility of β Ti-alloys. J Mech Behav Biomed Mater 10:1–12.  https://doi.org/10.1016/j.jmbbm.2012.02.014 CrossRefGoogle Scholar
  75. 75.
    Sivakumar B, Singh R, Pathak LC (2015) Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer’s solution for bioimplant applications. Mater Sci Eng C 48:243–255.  https://doi.org/10.1016/j.msec.2014.12.002 CrossRefGoogle Scholar
  76. 76.
    Das M, Bhattacharya K, Dittrick SA et al (2014) In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in vitro biocompatibility. J Mech Behav Biomed Mater 29:259–271CrossRefGoogle Scholar
  77. 77.
    Li BS, Shang JL, Guo JJ, Fu HZ (2004) In situ observation of fracture behavior of in situ TiBw/Ti composites. Mater Sci Eng A 383:316–322CrossRefGoogle Scholar
  78. 78.
    Soboyejo WO, Shen W, Srivatsan T (2004) An investigation of fatigue crack nucleation and growth in a Ti–6Al–4V/TiB in situ composite. Mech Mater 36:141–159CrossRefGoogle Scholar
  79. 79.
    Emura S, Yang S, Hagiwara M (2004) Room-temperature tensile and high-cycle-fatigue strength of fine TiB particulate-reinforced Ti–22Al–27Nb composites. Metall Mater Trans A 35A:2971–2979CrossRefGoogle Scholar
  80. 80.
    Fan Z, Chandrasekaran L, Ward-Close CM, Miodownik AP (1995) The effect of pre-consolidation heat treatment on TiB morphology and mechanical properties of rapidly solidified Ti–6Al–4V–XB alloys. Scr Metall Mater 32:833–838.  https://doi.org/10.1016/0956-716X(95)93210-U CrossRefGoogle Scholar
  81. 81.
    Kobayashi M, Funami K, Suzuki S, Ouchi C (1998) Manufacturing process and mechanical properties of fine TiB dispersed Ti–6Al–4V alloy composites obtained by reaction sintering. Mater Sci Eng A 243:279–284CrossRefGoogle Scholar
  82. 82.
    Godfrey TMT, Wisbey A, Goodwin PS, Bagnall K (2000) Microstructure and tensile properties of mechanically alloyed Ti–6A1–4V with boron additions. Mater Sci Eng A 282:240–250.  https://doi.org/10.1016/S0921-5093(99)00699-1 CrossRefGoogle Scholar
  83. 83.
    Ravi Chandran KS, Panda KB, Sahay SS (2004) TiBw-reinforced Ti composites: processing, properties, application prospects, and research needs. JOM 56:42–48.  https://doi.org/10.1007/s11837-004-0127-1 CrossRefGoogle Scholar
  84. 84.
    Feng H, Jia D, Zhou Y (2005) Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Compos Part A Appl Sci Manuf 36:558–563.  https://doi.org/10.1016/j.compositesa.2004.09.003 CrossRefGoogle Scholar
  85. 85.
    Ravi Chandran KS, Panda KB (2002) Titanium composites with TiB whiskers. Adv Mater Process 160:59–62Google Scholar
  86. 86.
    Panda KB, Ravichandran KS (2003) Synthesis of ductile titanium-titanium boride (Ti–TiB) composites with a beta-titanium matrix: the nature of TiB formation and composite properties. Metall Mater Trans A Phys Metall Mater Sci 34(A):1371–1385.  https://doi.org/10.1007/s11661-003-0249-z CrossRefGoogle Scholar
  87. 87.
    Zhang X, Xu Q, Han J, Kvanin VL (2003) Self-propagating high temperature combustion synthesis of TiB/Ti composites. Mater Sci Eng A 348:41–46.  https://doi.org/10.1016/S0921-5093(02)00635-4 CrossRefGoogle Scholar
  88. 88.
    Atri R, Ravichandran K, Jha S (1999) Elastic properties of in situ processed Ti–TiB composites measured by impulse excitation of vibration. Mater Sci Eng A 271:150–159.  https://doi.org/10.1016/S0921-5093(99)00198-7 CrossRefGoogle Scholar
  89. 89.
    Radhakrishna Bhat BV, Subramanyam J, Bhanu Prasad VV (2002) Preparation of Ti–TiB–TiC & Ti–TiB composites by in situ reaction hot processing. Mater Sci Eng A 325:126–130.  https://doi.org/10.1016/S0921-5093(01)01412-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Advanced Materials Processing Laboratory (AMPL)San Diego State UniversitySan DiegoUSA

Personalised recommendations