Journal of Materials Science

, Volume 54, Issue 7, pp 5445–5456 | Cite as

Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride

  • Ruiyang Zhao
  • Xiaoxia Sun
  • Yanrou Jin
  • Jishu HanEmail author
  • Lei Wang
  • Fusheng Liu
Chemical routes to materials


The arbitrary discharge of antibiotic residuals has seriously influenced the ecosystem and human health. Photocatalytic degradation of antibiotic residuals with semiconductor photocatalyst is considered to be more effective method due to its unique superiority. Herein, Au/Pd/g-C3N4 nanocomposites were synthesized by loading Au and Pd nanoparticles on the surface of g-C3N4 sheets for photocatalytic degradation of tetracycline hydrochloride. The modification of g-C3N4 with Au and Pd nanoparticles efficiently enhanced the visible-light absorption, improved the separation and transfer of photogenerated electrons and decreased the recombination of electron–hole pairs. As-prepared Au/Pd/g-C3N4 nanocomposites exhibited improved photocatalytic performance with more than 90% degradation rate. Furthermore, the good stability and reusability of Au/Pd/g-C3N4 nanocomposites would be beneficial to further photocatalytic degradation application.



This work was supported by National Natural Science Foundation of China (Nos. 51703112, 51772162, 21571112, 51572136, 21601103), the Taishan Scholars Program, Natural Science Foundation of Shandong Province, China (Nos. ZR2016BQ28, ZR2017BEM040), China Postdoctoral Science Foundation (No. 2017M622152), Open Fund of the State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (No. 2017-skllmd-10) and the Scientific Research Foundation of Key Laboratory of Eco-chemical Engineering, Ministry of Education Qingdao University of Science and Technology (No. KF1701).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_3278_MOESM1_ESM.pdf (453 kb)
Supplementary material 1 (PDF 452 kb)


  1. 1.
    Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364CrossRefGoogle Scholar
  2. 2.
    Kim HY, Asselman J, Jeong TY, Yu SH, Schamphelaere KACD, Kim SD (2017) Multigenerational effects of the antibiotic tetracycline on transcriptional responses of daphnia magna and its relationship to higher levels of biological organizations. Environ Sci Technol 51:12898–12907CrossRefGoogle Scholar
  3. 3.
    Song C, Zhang C, Fan L, Qiu L, Wu W, Meng S, Hu G, Kamira B, Chen J (2016) Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China. Chemosphere 161:127–135CrossRefGoogle Scholar
  4. 4.
    Emad S, Elmolla Malay Chaudhuri (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252:46–52CrossRefGoogle Scholar
  5. 5.
    Zhang QQ, Jia A, Wang Y, Liu H, Wang KP, Peng H, Dong ZM, Hu JY (2014) Occurrences of three classes of antibiotics in a natural river basin: association with antibiotic-resistant Escherichia coli. Environ Sci Technol 48:14317–14325CrossRefGoogle Scholar
  6. 6.
    Walter MV, Vennes JW (1985) Occurrence of multiple-antibiotic-resistant enteric Bacteria in domestic sewage and oxidation lagoons. Appl Environ Microbiol 50:930–933Google Scholar
  7. 7.
    Phan T, Phuong H, Satoshi M, Norihide N, Hideshige T, Akiko S, Duong HA, Pham HV, Satoru S (2011) Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Sci Total Environ 409:2894–2901CrossRefGoogle Scholar
  8. 8.
    Trovó AG, Nigeria RF, Agüera A, Fernandez-Alba AR, Malato S (2011) Degradation of the antibiotic amoxicillin by photo-Fenton process-chemical and toxicological assessment. Water Res 45:1394–1402CrossRefGoogle Scholar
  9. 9.
    Hu B, Cai F, Chen T et al (2015) Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation. ACS Appl Mater Interfaces 7:18247–18256CrossRefGoogle Scholar
  10. 10.
    Homem V, Alves A, Santos L (2010) Amoxicillin degradation at ppb levels by Fenton’s oxidation using design of experiments. Sci Total Environ 408:6272–6280CrossRefGoogle Scholar
  11. 11.
    Lee YJ, Lee SE, Lee DS (2008) Risk assessment of human antibiotics in Korean aquatic environment. Environ Toxicol Pharmacol 26:216–221CrossRefGoogle Scholar
  12. 12.
    Deyong K, Bin L, Hui Y, Haoyi C, Jincai M, Minhua C, Aijie W, Nanqi R (2015) Cathodic degradation of antibiotics: characterization and pathway analysis. Water Res 72:281–292CrossRefGoogle Scholar
  13. 13.
    Liu C, Nanaboina V, Korshin GV, Jiang W (2012) Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater. Water Res 46:5235–5246CrossRefGoogle Scholar
  14. 14.
    Alexandrino DAM, Mucha AP, Almeida CMR, Gao W, Jia Z, Carvalho MF (2017) Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Sci Total Environ 581:582359–582368Google Scholar
  15. 15.
    Barhoumi N, Labiadh L, Oturan MA, Oturan N, Gadri A, Ammar S, Brillas E (2015) Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 141:250–257CrossRefGoogle Scholar
  16. 16.
    Gong YY, Wu YJ, Xu Y, Li L, Li C, Liu XJ, Niu LY (2018) All-solid-state Z-scheme CdTe/TiO2 heterostructure photocatalysts with enhanced visible-light photocatalytic degradation of antibiotic waste water. Chem Eng J 350:257–267CrossRefGoogle Scholar
  17. 17.
    Ekemena O, Oseghe A, Ofomaja E (2018) Facile microwave synthesis of pine cone derived C-doped TiO2 for the photodegradation of tetracycline hydrochloride under visible-LED light. J Environ Manag 223:860–867CrossRefGoogle Scholar
  18. 18.
    Bagher S, Termehyousefi A (2017) Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catal Sci Technol 7:4548–4569CrossRefGoogle Scholar
  19. 19.
    Yuan X, Jiang L, Chen X, Leng L, Wang H, Wu Z, Xiong T, Liang J, Zeng G (2017) Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation. Environ Sci Nano 4:2175–2185CrossRefGoogle Scholar
  20. 20.
    Tobajas M, Belver C, Rodriguez JJ (2017) Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chem Eng J 309:596–606CrossRefGoogle Scholar
  21. 21.
    El-Sheikh SM, Khedr TM, Zhang GS, Vogiazi V, Ismail AA, O’Shea K, Dionysiou DD (2017) Tailored synthesis of anatase–brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV–Vis light. Chem Eng J 310:428–436CrossRefGoogle Scholar
  22. 22.
    Vellaichamy B, Periakaruppan P, Arumugam R, Sellamuthu K, Nagulan B (2018) A novel photocatalytically active mesoporous metal-free PPy grafted MWCNT nanocomposite. J Colloid Interface Sci 514:376–385CrossRefGoogle Scholar
  23. 23.
    Salari H, Khasevani SG, Setayesh SR, Gholam MR (2018) Enhanced visible light photocatalytic activity of nano-BiOCl/BiVO4/Zeolite p–n heterojunction and Ag/BiOCl/BiVO4 hybrid. Mater Res Innov 22:137–143CrossRefGoogle Scholar
  24. 24.
    Ponnaiah SK, Periakaruppan P, Vellaichamy B, Nagulan B (2018) Efficacious separation of electron-hole pairs in CeO2–Al2O3 nanoparticles embedded GO heterojunction for robust visible-light driven dye degradation. J Colloid Interface Sci 512:219–230CrossRefGoogle Scholar
  25. 25.
    Wang FL, Feng YP, Chen P, Wang YF, Su YH, Zhang QX, Zeng YQ, Xie ZJ, Liu HJ, Liu Y, Lv WY, Liu GG (2018) Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination. Appl Catal B Environ 227:114–122CrossRefGoogle Scholar
  26. 26.
    Cai QF, Shen JC, Feng Y, Shen QL, Yang H (2015) Template-free preparation and characterization of nanoporous g-C3N4 with enhanced visible photocatalytic activity. J Alloys Compd 628:372–378CrossRefGoogle Scholar
  27. 27.
    Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7:15–37CrossRefGoogle Scholar
  28. 28.
    Xiao TT, Tang Z, Yang Y, Tang LQ, Zhou Y, Zou ZG (2018) In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl Catal B Environ 220:417–428CrossRefGoogle Scholar
  29. 29.
    Zhang J, Ma Y, Du YL, Jiang HZ, Zhou DD, Dong SS (2017) Carbon nanodots/WO3 nanorods Z-scheme composites: remarkably enhanced photocatalytic performance under broad spectrum. Appl Catal B Environ 209:253–264CrossRefGoogle Scholar
  30. 30.
    Jiang D, Wang T, Xu Q, Li D, Meng S, Chen M (2017) Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl Catal B Environ 201:617–628CrossRefGoogle Scholar
  31. 31.
    Li ZJ, Wang JH, Zhu KX, Ma FL, Meng AL (2015) Ag/g-C3N4 Composite nanosheets: synthesis and enhanced visible photo catalytic activities. Mater Lett 145:167–170CrossRefGoogle Scholar
  32. 32.
    Zhao W, Guo Y, Wang S, He H, Sun C, Yang S (2015) A novel ternary plasmonic photocatalyst: ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance. Appl Catal B Environ 165:335–343CrossRefGoogle Scholar
  33. 33.
    He YM, Wang Y, Zhang LH, Teng BT, Fan MH (2015) High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl Catal B Environ 168:1–8Google Scholar
  34. 34.
    Khasevani SG, Mohaghegh N, Gholami MR (2017) Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 core@shell nanocomposite under visible light irradiation. New J Chem 41:10390–10396CrossRefGoogle Scholar
  35. 35.
    Vellaichamy B, Periakaruppan P (2018) Synergistic combination of a novel metal-free mesoporous bandgap-modified carbon nitride grafted polyaniline nanocomposite for decontamination of refractory pollutant. Ind Eng Chem Res 57:6684–6695CrossRefGoogle Scholar
  36. 36.
    Khasevani SG, Gholami MR (2018) Engineering a highly dispersed core@shell structure for efficient photocatalysis: a case study of ternary novel BiOI@MIL-88A(Fe)@g-C3N4 nanocomposite. Mater Res Bull 106:93–102CrossRefGoogle Scholar
  37. 37.
    Darabdhara G, Das MR (2018) Bimetallic Au–Pd nanoparticles on 2D supported graphitic carbon nitride and reduced graphene oxide sheets: a comparative photocatalytic degradation study of organic pollutants in water. Chemosphere 197:817–829CrossRefGoogle Scholar
  38. 38.
    Jiang J, Yu JG, Cao S (2016) Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light. J Colloid Interface Sci 461:56–63CrossRefGoogle Scholar
  39. 39.
    Xue J, Ma S, Zhou Y et al (2015) Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 18:9630–9637CrossRefGoogle Scholar
  40. 40.
    Zhang HJ, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52CrossRefGoogle Scholar
  41. 41.
    Ferrando R, Jellinek J, Johnston RL (2008) ChemInform abstract: nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910CrossRefGoogle Scholar
  42. 42.
    Zhang S, Shao YY, Yin GP, Lin YH (2010) Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew Chem Int Ed 49:2211–2214CrossRefGoogle Scholar
  43. 43.
    Mentin O, Sun XL, Sun SH (2013) Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 5:910–912CrossRefGoogle Scholar
  44. 44.
    Xiao Q, Sarina S, Jaatinen E, Jia JF, Arnold DP, Liu HW, Zhu H (2014) Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chem 16:4272–4285CrossRefGoogle Scholar
  45. 45.
    Darabdhara G, Boruah PK, Borthakur P, Hussain N, Das MR, Ahamad T, Alshehri SM, Malgras V, Wu KCW, Yamauchi Y (2016) Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8:8276–8287CrossRefGoogle Scholar
  46. 46.
    Sarina S, Waclawik ER, Zhu HY (2013) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15:1814–1833CrossRefGoogle Scholar
  47. 47.
    Han JS, Zhou ZW, Yin Y, Luo XT, Li J, Zhang H, Yang B (2012) One-pot, seedless synthesis of flowerlike Au–Pd bimetallic nanoparticles with core-shell-like structure via sodium citrate coreduction of metal ions. CrystEngComm 14:7036–7042CrossRefGoogle Scholar
  48. 48.
    Liu JH, Zhang TK, Wang ZC, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21:14398–14401CrossRefGoogle Scholar
  49. 49.
    Sun JX, Yuan YP, Qiu LG, Jiang X, Xie AJ, Shen YH, Zhu JF (2012) Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans 41:6756–6763CrossRefGoogle Scholar
  50. 50.
    Smilgies DM (2009) Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J Appl Crystallogr 42:1030–1034CrossRefGoogle Scholar
  51. 51.
    Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat Nanotechnol 6:534CrossRefGoogle Scholar
  52. 52.
    Zhu YP, Li M, Liu YL, Ren TZ, Yuan ZY (2014) Carbon doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. J Phys Chem C 118:10963–10971CrossRefGoogle Scholar
  53. 53.
    Deng QF, Liu L, Lin XZ, Du GH, Liu YP, Yuan ZY (2012) Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chem Eng J 203:63–70CrossRefGoogle Scholar
  54. 54.
    Dong F, Wu LW, Sun YJ, Fu M, Wu ZB, Lee SC (2011) Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem 21:15171–15174CrossRefGoogle Scholar
  55. 55.
    Zhang P, Shao CL, Li XH, Zhang MY, Zhang X, Sun YY, Liu YC (2012) In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-way synergistic heterostructure with enhanced photocatalytic activity. J Hazard Mater 237:331–338CrossRefGoogle Scholar
  56. 56.
    Singh GP, Shrestha KM, Nepal A, Klabunde KJ, Sorensen CM (2014) Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 25:265701(1–11)Google Scholar
  57. 57.
    Yonezawa T, Matsune H, Kunitake T (1999) Layered nanocomposite of close-packed gold nanoparticles and TiO2 gel layers. Chem Mater 11:33–35CrossRefGoogle Scholar
  58. 58.
    Zhang N, Chen D, Cai BC, Wang S, Niu F, Qin LS, Huang YX (2017) Facile synthesis of CdSe–ZnWO4 composite photocatalysts for efficient visible light driven hydrogen evolution. Int J Hydrogen Energy 42:1962–1969CrossRefGoogle Scholar
  59. 59.
    Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787CrossRefGoogle Scholar
  60. 60.
    Dai X, Xie ML, Meng SG, Fu XL, Chen SF (2014) Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl Catal B Environ 158–159:382–390CrossRefGoogle Scholar
  61. 61.
    Asiltürk M, Sayılka F, Erdemoğlu S, Akarsu M, Sayılkan H, Erdemoğlu M, Arpaç E (2006) Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B. J Hazard Mater 129:164–170CrossRefGoogle Scholar
  62. 62.
    Li YJ, Chen W (2011) Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2-zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency. Catal Sci Technol 1:802–809CrossRefGoogle Scholar
  63. 63.
    Jeong S, Lee H, Park H, Jeon KJ, Park YK, Jung SC (2018) Rapid photocatalytic degradation of nitrobenzene under the simultaneous illumination of UV and microwave radiation fields with a TiO2 ball catalyst. Catal Today 307:65–72CrossRefGoogle Scholar
  64. 64.
    Xu YX, Lin DF, Liu XP, Luo YJ, Xue H, Huang BQ, Chen QH, Qian QR (2018) Electrospun BiOCl/Bi2Ti2O7 nanorod heterostructures with enhanced solar light efficiency in the photocatalytic degradation of tetracycline hydrochloride. ChemCatChem 10:2496–2504CrossRefGoogle Scholar
  65. 65.
    Gao B, Dong SN, Liu JD, Liu LF, Feng QQ, Tan N, Liu TT, Bo LL, Wang L (2016) Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4. Chem Eng J 304:826–840CrossRefGoogle Scholar
  66. 66.
    Wang XN, Jia JP, Wang YL (2017) Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem Eng J 315:274–282CrossRefGoogle Scholar
  67. 67.
    Mboula VM, Hequet V, Gru Y, Colin R, Andres Y (2012) Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J Hazard Mater 209:355–364CrossRefGoogle Scholar
  68. 68.
    Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637CrossRefGoogle Scholar
  69. 69.
    Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRefGoogle Scholar
  70. 70.
    Zhang ZY, Wang Z, Cao SW, Xue C (2013) Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J Phys Chem C 117:25939–25947CrossRefGoogle Scholar
  71. 71.
    Ren HT, Jia SY, Wu Y, Wu SH, Zhang TH, Han X (2014) Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light. Ind Eng Chem Res 53:17645–17653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.Key Laboratory of Eco-Chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations