Journal of Materials Science

, Volume 54, Issue 9, pp 7156–7164 | Cite as

The effect of Na content on the electrochemical performance of the O3-type NaxFe0.5Mn0.5O2 for sodium-ion batteries

  • Dengmei Zhou
  • Wanxia HuangEmail author
  • Fenglin Zhao
  • Xiang Lv
Energy materials


Owing to the abundant storage and environmentally benign of Na, Fe, and Mn elements, FeMn-based O3-type NaFe0.5Mn0.5O2 materials were considered to be a promising cathode for sodium-ion batteries. However, the poor rate performance was barely satisfactory to the commercial production. Here, different Na content O3-type NaxFe0.5Mn0.5O2 (x = 1, 0.9, 0.8) for sodium-ion batteries were synthesized by solid-state reaction. The results illustrated that Na-deficient compound was beneficial to improve the rate performance and discharge capacity. Due to the Na-deficient in the octahedral sites, O3-type Na0.8Fe0.5Mn0.5O2 achieved a discharge capacity of 179 mAh g−1 at 0.1 C, which is relatively higher than that of O3-type NaFe0.5Mn0.5O2 (145 mAh g−1). Besides, the O3-type Na0.8Fe0.5Mn0.5O2 exhibited an initial discharge capacity of 126 mAh g−1 and outstanding capacity retention of 82.6% after 60 cycles at 1C. The excellent performance indicates that nontoxic and earth-abundant Na-deficient O3-type cathode may be a promising cathode for large-scale application and development of sodium-ion batteries.



The authors would like to acknowledge the National Natural Science Foundation of China (No. 61771327) for financial support.


  1. 1.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRefGoogle Scholar
  2. 2.
    Vassilaras P, Toumar AJ, Ceder G (2014) Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem Commun 38:79–81CrossRefGoogle Scholar
  3. 3.
    Ling R, Cai S, Xie D, Shen W, Hu X, Li Y, Hua S, Jiang Y, Sun X (2017) Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries. J Mater Sci 53(4):2735–2747. CrossRefGoogle Scholar
  4. 4.
    Deng J, Luo W-B, Lu X, Yao Q, Wang Z, Liu H-K, Zhou H, Dou S-X (2017) High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Adv Energy Mater 8:1701610CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Huang Y, Liu Y, Sun S, Wang K, Li Y, Li X, Han J, Huang Y (2017) F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries. Sci China Mater 60(7):629–636CrossRefGoogle Scholar
  6. 6.
    Ni Q, Bai Y, Wu F, Wu C (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 4(3):1600275CrossRefGoogle Scholar
  7. 7.
    Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8(1):81–102CrossRefGoogle Scholar
  8. 8.
    Suman G, Rao CS, Ojha PK, Babu MSS, Rao RB (2017) Mixed polyanion NaCo1−x (VO)xPO4 glass-ceramic cathode: role of ‘Co’ on structural behaviour and electrochemical performance. J Mater Sci 52(9):5038–5047. CrossRefGoogle Scholar
  9. 9.
    You Y, Manthiram A (2017) Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv Energy Mater 8:1701785CrossRefGoogle Scholar
  10. 10.
    Keller M, Buchholz D, Passerini S (2016) Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases. Adv Energy Mater 6(3):1501555CrossRefGoogle Scholar
  11. 11.
    Xie Y, Wang H, Xu G, Wang J, Sheng H, Chen Z, Ren Y, Sun C-J, Wen J, Wang J, Miller DJ, Lu J, Amine K, Ma Z-F (2016) In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv Energy Mater 6(24):1601306CrossRefGoogle Scholar
  12. 12.
    Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B & C 99(1–4):81–85CrossRefGoogle Scholar
  13. 13.
    Yue J-L, Zhou Y-N, Yu X, Bak S-M, Yang X-Q, Fu Z-W (2015) O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries. J Mater Chem A 3(46):23261–23267CrossRefGoogle Scholar
  14. 14.
    Wang P-F, You Y, Yin Y-X, Guo Y-G (2016) An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. J Mater Chem A 4(45):17660–17664CrossRefGoogle Scholar
  15. 15.
    Qi X, Wang Y, Jiang L, Mu L, Zhao C, Liu L, Hu Y-S, Chen L, Huang X (2016) Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6−x]O2 layered-oxide cathode materials for sodium-ion batteries. Part Part Syst Charact 33(8):538–544CrossRefGoogle Scholar
  16. 16.
    Li X, Wu D, Zhou Y-N, Liu L, Yang X-Q, Ceder G (2014) O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: a quaternary layered cathode compound for rechargeable Na ion batteries. Electrochem Commun 49:51–54CrossRefGoogle Scholar
  17. 17.
    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type NaxFe1/2Mn1/2O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517CrossRefGoogle Scholar
  18. 18.
    Zheng L, Obrovac MN (2017) Investigation of O3-type Na0.9Ni0.45MnxTi0.55-xO2 (0 ≤ x ≤ 0.55) as positive electrode materials for sodium-ion batteries. Electrochim Acta 233:284–291CrossRefGoogle Scholar
  19. 19.
    Guo H, Wang Y, Han W, Yu Z, Qi X, Sun K, Hu Y-S, Liu Y, Chen D, Chen L (2015) Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries. Electrochim Acta 158:258–263CrossRefGoogle Scholar
  20. 20.
    Lu X, Wang Y, Liu P, Gu L, Hu YS, Li H, Demopoulos GP, Chen L (2014) Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale. Phys Chem Chem Phys 16(40):21946–21952CrossRefGoogle Scholar
  21. 21.
    Mortemard de Boisse B, Cheng JH, Carlier D, Guignard M, Pan CJ, Bordère S, Filimonov D, Drathen C, Suard E, Hwang BJ, Wattiaux A, Delmas C (2015) O3–NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de)intercalation. J Mater Chem A 3(20):10976–10989CrossRefGoogle Scholar
  22. 22.
    Oh S-M, Myung S-T, Hwang J-Y, Scrosati B, Amine K, Sun Y-K (2014) High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chem Mater 26(21):6165–6171CrossRefGoogle Scholar
  23. 23.
    Zheng S, Zhong G, McDonald MJ, Gong Z, Liu R, Wen W, Yang C, Yang Y (2016) Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries. J Mater Chem A 4(23):9054–9062CrossRefGoogle Scholar
  24. 24.
    Han MH, Acebedo B, Gonzalo E, Fontecoba PS, Clarke S, Saurel D, Rojo T (2015) Synthesis and electrochemistry study of P2- and O3-phase Na2/3Fe1/2Mn1/2O2. Electrochim Acta 182:1029–1036CrossRefGoogle Scholar
  25. 25.
    Bao S, Luo S, Wang Z, Wang Q, Hao A, Zhang Y, Wang Y (2017) The critical role of sodium content on structure, morphology and electrochemical performance of layered P2-type NaxNi0.167Co0.167Mn0.67O2 for sodium ion batteries. J Power Sources 362:323–331CrossRefGoogle Scholar
  26. 26.
    Li Z-Y, Gao R, Sun L, Hu Z, Liu X (2017) Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries. Electrochim Acta 223:92–99CrossRefGoogle Scholar
  27. 27.
    Zhou D, Huang W, Zhao F (2018) P2-type Na0.67Fe0.3Mn0.3Co0.4O2 cathodes for high-performance sodium-ion batteries. Solid State Ionics 322:18–23CrossRefGoogle Scholar
  28. 28.
    Liu J, Wang J, Ku Z, Wang H, Chen S, Zhang L, Lin J, Shen ZX (2016) Aqueous rechargeable alkaline CoxNi2−xS2/TiO2 battery. ACS Nano 10(1):1007–1016CrossRefGoogle Scholar
  29. 29.
    Xi LJ, Wang H-E, Lu ZG, Yang SL, Ma RG, Deng JQ, Chung CY (2012) Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. J Power Sources 198:251–257CrossRefGoogle Scholar
  30. 30.
    Xiang M, Su C-W, Feng L, Yuan M, Guo J (2014) Rapid synthesis of high-cycling performance LiMgxMn2−xO4 (x ≤ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim Acta 125:524–529CrossRefGoogle Scholar
  31. 31.
    Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Jing M, Li F, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem A 2(15):5358CrossRefGoogle Scholar
  32. 32.
    Sun X, Jin Y, Zhang C-Y, Wen J-W, Shao Y, Zang Y, Chen C-H (2014) Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries. J Mater Chem A 2(41):17268–17271CrossRefGoogle Scholar
  33. 33.
    Xu GB, Li W, Yang LW, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. J Power Sources 276:247–254CrossRefGoogle Scholar
  34. 34.
    Lee SY, Kim JH, Kang YC (2017) Electrochemical properties of P2-type Na2/3Ni1/3Mn2/3O2 plates synthesized by spray pyrolysis process for sodium-ion batteries. Electrochim Acta 225:86–92CrossRefGoogle Scholar
  35. 35.
    Wang B, Wang Y, Wu H, Yao L, Yang L, Li J, Xiang M, Zhang Y, Liu H (2017) Ultrafast and durable lithium storage enabled by porous bowl-like LiFePO4/C composite with Na+ doping. Chemelectrochem 4:1141–1147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations