Advertisement

Journal of Materials Science

, Volume 54, Issue 9, pp 7156–7164 | Cite as

The effect of Na content on the electrochemical performance of the O3-type NaxFe0.5Mn0.5O2 for sodium-ion batteries

  • Dengmei Zhou
  • Wanxia HuangEmail author
  • Fenglin Zhao
  • Xiang Lv
Energy materials
  • 256 Downloads

Abstract

Owing to the abundant storage and environmentally benign of Na, Fe, and Mn elements, FeMn-based O3-type NaFe0.5Mn0.5O2 materials were considered to be a promising cathode for sodium-ion batteries. However, the poor rate performance was barely satisfactory to the commercial production. Here, different Na content O3-type NaxFe0.5Mn0.5O2 (x = 1, 0.9, 0.8) for sodium-ion batteries were synthesized by solid-state reaction. The results illustrated that Na-deficient compound was beneficial to improve the rate performance and discharge capacity. Due to the Na-deficient in the octahedral sites, O3-type Na0.8Fe0.5Mn0.5O2 achieved a discharge capacity of 179 mAh g−1 at 0.1 C, which is relatively higher than that of O3-type NaFe0.5Mn0.5O2 (145 mAh g−1). Besides, the O3-type Na0.8Fe0.5Mn0.5O2 exhibited an initial discharge capacity of 126 mAh g−1 and outstanding capacity retention of 82.6% after 60 cycles at 1C. The excellent performance indicates that nontoxic and earth-abundant Na-deficient O3-type cathode may be a promising cathode for large-scale application and development of sodium-ion batteries.

Notes

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (No. 61771327) for financial support.

References

  1. 1.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRefGoogle Scholar
  2. 2.
    Vassilaras P, Toumar AJ, Ceder G (2014) Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem Commun 38:79–81CrossRefGoogle Scholar
  3. 3.
    Ling R, Cai S, Xie D, Shen W, Hu X, Li Y, Hua S, Jiang Y, Sun X (2017) Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries. J Mater Sci 53(4):2735–2747.  https://doi.org/10.1007/s10853-017-1738-6 CrossRefGoogle Scholar
  4. 4.
    Deng J, Luo W-B, Lu X, Yao Q, Wang Z, Liu H-K, Zhou H, Dou S-X (2017) High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Adv Energy Mater 8:1701610CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Huang Y, Liu Y, Sun S, Wang K, Li Y, Li X, Han J, Huang Y (2017) F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries. Sci China Mater 60(7):629–636CrossRefGoogle Scholar
  6. 6.
    Ni Q, Bai Y, Wu F, Wu C (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 4(3):1600275CrossRefGoogle Scholar
  7. 7.
    Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8(1):81–102CrossRefGoogle Scholar
  8. 8.
    Suman G, Rao CS, Ojha PK, Babu MSS, Rao RB (2017) Mixed polyanion NaCo1−x (VO)xPO4 glass-ceramic cathode: role of ‘Co’ on structural behaviour and electrochemical performance. J Mater Sci 52(9):5038–5047.  https://doi.org/10.1007/s10853-016-0741-7 CrossRefGoogle Scholar
  9. 9.
    You Y, Manthiram A (2017) Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv Energy Mater 8:1701785CrossRefGoogle Scholar
  10. 10.
    Keller M, Buchholz D, Passerini S (2016) Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases. Adv Energy Mater 6(3):1501555CrossRefGoogle Scholar
  11. 11.
    Xie Y, Wang H, Xu G, Wang J, Sheng H, Chen Z, Ren Y, Sun C-J, Wen J, Wang J, Miller DJ, Lu J, Amine K, Ma Z-F (2016) In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv Energy Mater 6(24):1601306CrossRefGoogle Scholar
  12. 12.
    Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B & C 99(1–4):81–85CrossRefGoogle Scholar
  13. 13.
    Yue J-L, Zhou Y-N, Yu X, Bak S-M, Yang X-Q, Fu Z-W (2015) O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries. J Mater Chem A 3(46):23261–23267CrossRefGoogle Scholar
  14. 14.
    Wang P-F, You Y, Yin Y-X, Guo Y-G (2016) An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. J Mater Chem A 4(45):17660–17664CrossRefGoogle Scholar
  15. 15.
    Qi X, Wang Y, Jiang L, Mu L, Zhao C, Liu L, Hu Y-S, Chen L, Huang X (2016) Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6−x]O2 layered-oxide cathode materials for sodium-ion batteries. Part Part Syst Charact 33(8):538–544CrossRefGoogle Scholar
  16. 16.
    Li X, Wu D, Zhou Y-N, Liu L, Yang X-Q, Ceder G (2014) O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: a quaternary layered cathode compound for rechargeable Na ion batteries. Electrochem Commun 49:51–54CrossRefGoogle Scholar
  17. 17.
    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type NaxFe1/2Mn1/2O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517CrossRefGoogle Scholar
  18. 18.
    Zheng L, Obrovac MN (2017) Investigation of O3-type Na0.9Ni0.45MnxTi0.55-xO2 (0 ≤ x ≤ 0.55) as positive electrode materials for sodium-ion batteries. Electrochim Acta 233:284–291CrossRefGoogle Scholar
  19. 19.
    Guo H, Wang Y, Han W, Yu Z, Qi X, Sun K, Hu Y-S, Liu Y, Chen D, Chen L (2015) Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries. Electrochim Acta 158:258–263CrossRefGoogle Scholar
  20. 20.
    Lu X, Wang Y, Liu P, Gu L, Hu YS, Li H, Demopoulos GP, Chen L (2014) Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale. Phys Chem Chem Phys 16(40):21946–21952CrossRefGoogle Scholar
  21. 21.
    Mortemard de Boisse B, Cheng JH, Carlier D, Guignard M, Pan CJ, Bordère S, Filimonov D, Drathen C, Suard E, Hwang BJ, Wattiaux A, Delmas C (2015) O3–NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de)intercalation. J Mater Chem A 3(20):10976–10989CrossRefGoogle Scholar
  22. 22.
    Oh S-M, Myung S-T, Hwang J-Y, Scrosati B, Amine K, Sun Y-K (2014) High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chem Mater 26(21):6165–6171CrossRefGoogle Scholar
  23. 23.
    Zheng S, Zhong G, McDonald MJ, Gong Z, Liu R, Wen W, Yang C, Yang Y (2016) Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries. J Mater Chem A 4(23):9054–9062CrossRefGoogle Scholar
  24. 24.
    Han MH, Acebedo B, Gonzalo E, Fontecoba PS, Clarke S, Saurel D, Rojo T (2015) Synthesis and electrochemistry study of P2- and O3-phase Na2/3Fe1/2Mn1/2O2. Electrochim Acta 182:1029–1036CrossRefGoogle Scholar
  25. 25.
    Bao S, Luo S, Wang Z, Wang Q, Hao A, Zhang Y, Wang Y (2017) The critical role of sodium content on structure, morphology and electrochemical performance of layered P2-type NaxNi0.167Co0.167Mn0.67O2 for sodium ion batteries. J Power Sources 362:323–331CrossRefGoogle Scholar
  26. 26.
    Li Z-Y, Gao R, Sun L, Hu Z, Liu X (2017) Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries. Electrochim Acta 223:92–99CrossRefGoogle Scholar
  27. 27.
    Zhou D, Huang W, Zhao F (2018) P2-type Na0.67Fe0.3Mn0.3Co0.4O2 cathodes for high-performance sodium-ion batteries. Solid State Ionics 322:18–23CrossRefGoogle Scholar
  28. 28.
    Liu J, Wang J, Ku Z, Wang H, Chen S, Zhang L, Lin J, Shen ZX (2016) Aqueous rechargeable alkaline CoxNi2−xS2/TiO2 battery. ACS Nano 10(1):1007–1016CrossRefGoogle Scholar
  29. 29.
    Xi LJ, Wang H-E, Lu ZG, Yang SL, Ma RG, Deng JQ, Chung CY (2012) Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. J Power Sources 198:251–257CrossRefGoogle Scholar
  30. 30.
    Xiang M, Su C-W, Feng L, Yuan M, Guo J (2014) Rapid synthesis of high-cycling performance LiMgxMn2−xO4 (x ≤ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim Acta 125:524–529CrossRefGoogle Scholar
  31. 31.
    Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Jing M, Li F, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem A 2(15):5358CrossRefGoogle Scholar
  32. 32.
    Sun X, Jin Y, Zhang C-Y, Wen J-W, Shao Y, Zang Y, Chen C-H (2014) Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries. J Mater Chem A 2(41):17268–17271CrossRefGoogle Scholar
  33. 33.
    Xu GB, Li W, Yang LW, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. J Power Sources 276:247–254CrossRefGoogle Scholar
  34. 34.
    Lee SY, Kim JH, Kang YC (2017) Electrochemical properties of P2-type Na2/3Ni1/3Mn2/3O2 plates synthesized by spray pyrolysis process for sodium-ion batteries. Electrochim Acta 225:86–92CrossRefGoogle Scholar
  35. 35.
    Wang B, Wang Y, Wu H, Yao L, Yang L, Li J, Xiang M, Zhang Y, Liu H (2017) Ultrafast and durable lithium storage enabled by porous bowl-like LiFePO4/C composite with Na+ doping. Chemelectrochem 4:1141–1147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations