Journal of Materials Science

, Volume 54, Issue 7, pp 5256–5265 | Cite as

Mechanical properties of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3−δ with various porosities and pore sizes

  • Md. Nurul IslamEmail author
  • Wakako Araki
  • Yoshio Arai


We have investigated the mechanical properties of porous La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) under uniaxial compression. Porous LSCF samples containing polymethyl methacrylate pore former with different diameters (0.4, 1.5 and 10 µm) were examined. The porosity increases with the increase in pore former content, and it also slightly increases with the increase in pore former size. The average pore size is constant for the same size pore former regardless of the porosity, and it is smaller than the original pore former diameter. X-ray diffraction confirms that all the samples have a rhombohedral crystal structure. The samples contain ferroelastic domains and exhibit clear mechanical behavior related to the ferroelasticity under uniaxial compression. The initial modulus, critical stress and compressive fracture strength of the porous sample decrease with the increase in porosity and pore size, where the dependence on the pore size is most clear for the fracture strength. An empirical equation to estimate the fracture strength of porous LSCF is proposed.



This work was supported by the Japan Society of the Promotion of Science (JSPS) (KAKENHI Grant Nos. 25709063 and partially 15KK0229).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict on interest.


  1. 1.
    Alcock CB, Doshi RC, Shen Y (1992) Perovskite electrodes for sensors. Solid State Ion 51:281–289CrossRefGoogle Scholar
  2. 2.
    Zeng Y, Lin YS, Swartz SL (1998) Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. J Membr Sci 150:87–98CrossRefGoogle Scholar
  3. 3.
    Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Proc 1:495–502CrossRefGoogle Scholar
  4. 4.
    Bouwmeester HJM (2003) Dense ceramic membranes for methane conversion. Catal Today 82:141–150CrossRefGoogle Scholar
  5. 5.
    Olivier L, Haag S, Mirodatos C, Veen ACV (2009) Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catal Today 142:34–41CrossRefGoogle Scholar
  6. 6.
    Akin FT, Lin YS (2002) Controlled oxidative coupling of methane by ionic conducting ceramic membrane. Catal Lett 78:239–242CrossRefGoogle Scholar
  7. 7.
    Wegmann M, Michen B, Luxbacher T, Fritsch J, Graule T (2008) Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of viruses from water. Water Res 42:1726–1734CrossRefGoogle Scholar
  8. 8.
    Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Costa JCDD (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41CrossRefGoogle Scholar
  9. 9.
    Mizusaki J, Sasamoto T, Cannon WR, Bowen HK (1983) Electronic conductivity, Seebeck coefficient, and defect structure of La1−XSrXFeO3(x = 0.1,0.25). J Am Ceram Soc 66:247–252CrossRefGoogle Scholar
  10. 10.
    Wang SR, Katsuki M, Dokiya M, Hashimoto T (2003) High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ phase structure and electrical conductivity. Solid State Ion 159:71–78CrossRefGoogle Scholar
  11. 11.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical-properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion 76:259–271CrossRefGoogle Scholar
  12. 12.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical-properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ion 76:273–283CrossRefGoogle Scholar
  13. 13.
    Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 11:1743–1746CrossRefGoogle Scholar
  14. 14.
    Kharton VV, Kovalevsky AV, Tikhonovich VN, Naumovich EN, Viskup AP (1998) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni): II. Oxygen permeation through Cr- and Ni-substituted LaCoO3. Solid State Ion 110:53–60CrossRefGoogle Scholar
  15. 15.
    Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J Electrochem Soc 143:2722–2729CrossRefGoogle Scholar
  16. 16.
    Li K, Tan X, Liu Y (2006) Single-step fabrication of ceramic hollow fibers for oxygen permeation. J Membr Sci 272:1–5CrossRefGoogle Scholar
  17. 17.
    Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M, Fujii S, Yazawa T (2005) Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3−δ and its effect on structure and conductivity. Solid State Ion 176:1145–1149CrossRefGoogle Scholar
  18. 18.
    Lai B, Kerman K, Ramanathan S (2011) Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 symmetric thin film solid oxide fuel cells. J Power Sources 196:1826–1832CrossRefGoogle Scholar
  19. 19.
    Serra JM, Julio GF, Baumann S, Schulze-Küppers F, Meulenberg WA (2013) Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. J Membr Sci 447:297–305CrossRefGoogle Scholar
  20. 20.
    Araki W, Malzbender J (2013) Ferroelastic deformation of La0.58Sr0.4Co0.2Fe0.8O3−δ under uniaxial compressive loading. J Eur Ceram Soc 33:805–812CrossRefGoogle Scholar
  21. 21.
    Zou Y, Araki W, Balaguer M, Malzbender J (2016) Elastic properties of freeze-cast La0.6Sr0.4Co0.2Fe0.8O3–δ. J Eur Ceram Soc 36:1651–1657CrossRefGoogle Scholar
  22. 22.
    Huang BX, Steinbrech RW, Baumann S, Malzbender J (2012) Creep behavior and its correlation with defect chemistry of La0.58Sr0.4Co0.2Fe0.8O3−δ. Acta Mater 60:2479–2484CrossRefGoogle Scholar
  23. 23.
    Zou Y, Schulze-Küppers F, Malzbende J (2015) Creep behavior of porous La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen transport membrane supports. Ceram Int 41:4064–4069CrossRefGoogle Scholar
  24. 24.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. 25.
    Kwan YBP (2000) The porosity dependence of flexural modulus and strength for capsule-free hot isostatically pressed porous alumina. J Mater Sci 35:1205–1211. CrossRefGoogle Scholar
  26. 26.
    Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley, WeinheimCrossRefGoogle Scholar
  27. 27.
    Huang S, Zhang Y, Leung B et al (2013) Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films. ACS Appl Mater Interfaces 5:11074–11079CrossRefGoogle Scholar
  28. 28.
    Ojos DE, Pellicer E, Sort J (2016) The influence of pore size on the indentation behavior of metallic nanoporous materials: a molecular dynamics study. Materials 9:355CrossRefGoogle Scholar
  29. 29.
    Isobe T, Kameshima Y, Nakajima A, Okada K, Hotta Y (2007) Gas permeability and mechanical properties of porous alumina ceramics with unidirectionally aligned pores. J Eur Ceram Soc 27:53–59CrossRefGoogle Scholar
  30. 30.
    Phani KK, Niyogi SK (1987) Young’s modulus of porous brittle solids. J Mater Sci 22:257–263. CrossRefGoogle Scholar
  31. 31.
    Hu L, Benitez R, Basu S, Karaman I (2012) Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater 60:6266–6277CrossRefGoogle Scholar
  32. 32.
    Eom JH, Kim YW (2009) Effect of additive composition on microstructure and strength of porous silicon carbide ceramics. J Mater Sci 44:4482–4486. CrossRefGoogle Scholar
  33. 33.
    Latella BA, Mehrtens EG (2007) High temperature biaxial strength of porous mullite–alumina and mullite–zirconia ceramics. J Mater Sci 42:5880–5882. CrossRefGoogle Scholar
  34. 34.
    Selçuk A, Atkinson A (1997) Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J Eur Ceram Soc 17:1523–1532CrossRefGoogle Scholar
  35. 35.
    Mielle S, Lombardi M, Chevalier J, Montanaro L (2012) Mechanical properties of porous ceramics in compression: on the transition between elastic, brittle, and cellular behavior. J Eur Ceram Soc 32:3959–3976CrossRefGoogle Scholar
  36. 36.
    Chen W, Miyamoto Y (2014) Fabrication of porous silicon carbide ceramics with high porosity and high strength. J Eur Ceram Soc 34:837–840CrossRefGoogle Scholar
  37. 37.
    Ryshkewitch E (1953) Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc 36:65–68CrossRefGoogle Scholar
  38. 38.
    Pećanac G, Foghmoes S, Lipińska-Chwalek M, Baumann S, Beck T, Malzbender J (2013) Strength degradation and failure limits of dense and porous ceramic membrane materials. J Eur Ceram Soc 33:2689–2698CrossRefGoogle Scholar
  39. 39.
    Chou YS, Stevenson JW, Armstrong TR, Pederson LR (2000) Mechanical properties of La1-xSrxCo0.2Fe0.8O3 Mixed-Conducting perovskites made by the combustion synthesis technique. J Am Ceram Soc 83:1457–1464CrossRefGoogle Scholar
  40. 40.
    Islam MN, Araki W, Arai Y (2017) Mechanical behavior of ferroelastic porous La0.6Sr0.4Co0.2Fe0.8O3−δ prepared with different pore formers. Ceram Int 43:14989–14995CrossRefGoogle Scholar
  41. 41.
    Araki W, Shionoya K, Arai Y (2016) Ferroelastic mechanical behaviour of porous La0.6Sr0.4Co0.2Fe0.8O3−δ. Ceram Int 42:14614–14617CrossRefGoogle Scholar
  42. 42.
    Park YM, Kim JH, Kim H (2011) High-performance composite cathodes for solid oxide fuel cells. Int J Hydrogen Energy 36:9169–9179CrossRefGoogle Scholar
  43. 43.
    Doorn RHEV, Bouwmeester HJM, Burggraaf AJ (1998) Kinetic decomposition of La0.3Sr0.7CoO3−δ perovskite membranes during oxygen permeation. Solid State Ion 111:263–272CrossRefGoogle Scholar
  44. 44.
    Paul ND, Robin ER (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 134:21–33CrossRefGoogle Scholar
  45. 45.
    Petric A, Huang P, Tietz F (2000) Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ion 135:719–725CrossRefGoogle Scholar
  46. 46.
    Liu R, Wang CA (2013) Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics. J Eur Ceram Soc 33:1859–1865CrossRefGoogle Scholar
  47. 47.
    Vullum PE, Holmestad R, Lein HL, Mastin J, Einarsrud MA, Grande T (2007) Monoclinic ferroelastic domains in LaCoO3-based perovskites. Adv Mater 19:4399–4403CrossRefGoogle Scholar
  48. 48.
    Araki W, Takeda K, Arai Y (2016) Mechanical behaviour of ferroelastic lanthanum metal oxides LaMO3 (M = Co, Al, Ga, Fe). J Eur Ceram Soc 36:4089–4094CrossRefGoogle Scholar
  49. 49.
    Chen Z, Wang X, Bhakhri V, Giuliani F, Atkinson A (2013) Nanoindentation of porous bulk and thin films of La0.6Sr0.4Co0.2Fe0.8O3−δ. Acta Mater 61:5720–5734CrossRefGoogle Scholar
  50. 50.
    Zhang J, Malzbender J (2015) Mechanical characterization of micro- and nano-porous alumina. Ceram Int 41:10725–10729CrossRefGoogle Scholar
  51. 51.
    Huang BX, Steinbrech RW, Malzbender J (2012) Direct observation of ferroelastic domain effects in LSCF perovskites. Solid State Ionics 228:32–36CrossRefGoogle Scholar
  52. 52.
    Liu DM (1997) Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic. Ceram Int 23:135–139CrossRefGoogle Scholar
  53. 53.
    Huang BX, Malzbender J, Steinbrech RW, Singheiser L (2009) Mechanical properties of La0.58Sr0.4Co0.2Fe0.8O3-δ membranes. Solid State Ion 180:241–245CrossRefGoogle Scholar
  54. 54.
    Knudsen FP (1959) Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J Am Ceram Soc 42:376–387CrossRefGoogle Scholar
  55. 55.
    Wen CE, Yamada Y, Shomojima K, Chino Y, Hosokawa H, Mabuchi M (2004) Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett 58:357–360CrossRefGoogle Scholar
  56. 56.
    Li X, Wu P, Zhu D (2013) Properties of porous alumina ceramics prepared by technique combining cold-drying and sintering. Int J Refract Met Hard Mater 41:437–441CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringRajshahi University of Engineering and TechnologyRajshahiBangladesh
  2. 2.Department of Mechanical EngineeringSaitama UniversitySaitamaJapan

Personalised recommendations