Journal of Materials Science

, Volume 54, Issue 9, pp 7096–7109 | Cite as

Regulating the dielectric property of percolative composites via a core–shell-structured ionic liquid/carbon nanotube hybrid

  • Ye Ren
  • Zheng Zhou
  • Guang-Xin ChenEmail author
  • Qifang LiEmail author
Energy materials


Nanodielectric materials have been extensively studied because of their potential applications in energy conversion and storage systems. However, dielectric materials with high constant, low loss, and high toughness have yet to be developed. In this work, we design and fabricate different core–shell-structured hybrids composed of polymerized imidazolium ionic liquid (PIL) and carbon nanotubes (CNTs). The hybrids exhibit varied structure and coating layer thickness upon adjusting the concentrations of monomer and solvent and is used to fabricate nanodielectric composites. The polymer shell is formed as a part of the composite interface and thus directly alters the interfacial structure. The obtained composites exhibit varied dielectric behaviors over a wide frequency range. The dielectric properties of the composites can be easily tailored by choosing appropriate hybrids and controlling the proportion of fillers. These features render PIL-CNTs/PVDF as a potential high-performance dielectric material for applications in capacitors.



The authors gratefully acknowledge financial support of this work coming from National Natural Science Foundation of China (NSFC) (No. 51573010).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cao Z, Wei B (2013) A perspective: carbon nanotube macro-films for energy storage. Energ Environ Sci 6:3183CrossRefGoogle Scholar
  2. 2.
    Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250CrossRefGoogle Scholar
  3. 3.
    Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334CrossRefGoogle Scholar
  4. 4.
    Zhang G, Li Y, Tang S, Thompson RD, Zhu L (2017) The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields. ACS Appl Mater Interfaces 9:10106CrossRefGoogle Scholar
  5. 5.
    Dang Z-M, Yuan J-K, Zha J-W, Zhou T, Li S-T, Hu G-H (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57:660CrossRefGoogle Scholar
  6. 6.
    Zaghib K, Shim J, Guerfi A, Charest P, Striebel K (2005) Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries. Electrochem Solid State Lett 8:A207CrossRefGoogle Scholar
  7. 7.
    Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664CrossRefGoogle Scholar
  8. 8.
    Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7:394CrossRefGoogle Scholar
  9. 9.
    Pollak E, Geng B, Jeon K-J, Lucas IT, Richardson TJ, Wang F, Kostecki R (2010) The interaction of Li+ with single-layer and few-layer graphene. Nano Lett 10:3386CrossRefGoogle Scholar
  10. 10.
    Yao S, Yuan J, Mehedi H-A, Gheeraert E, Sylvestre A (2017) Carbon nanotube forest based electrostatic capacitor with excellent dielectric performances. Carbon 116:648CrossRefGoogle Scholar
  11. 11.
    Li QF, Xu YH, Yoon JS, Chen GX (2011) Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties. J Mater Sci 46:2324. CrossRefGoogle Scholar
  12. 12.
    Tunckol M, Durand J, Serp P (2012) Carbon nanomaterial–ionic liquid hybrids. Carbon 50:4303CrossRefGoogle Scholar
  13. 13.
    Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J 13:5048CrossRefGoogle Scholar
  14. 14.
    Xing C, Zhao L, You J, Dong W, Cao X, Li Y (2012) Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116:8312CrossRefGoogle Scholar
  15. 15.
    Zhou Y, Qu J (2017) Ionic liquids as lubricant additives: a review. ACS Appl Mater Interfaces 9:3209CrossRefGoogle Scholar
  16. 16.
    Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072CrossRefGoogle Scholar
  17. 17.
    Ahammad AJS, Lee JJ, Rahman MA (2009) Electrochemical sensors based on carbon nanotubes. Sensors 9:2289CrossRefGoogle Scholar
  18. 18.
    Tao H, Wei W, Zeng X, Liu X, Zhang X, Zhang Y (2009) Electrocatalytic oxidation and determination of estradiol using an electrode modified with carbon nanotubes and an ionic liquid. Microchim Acta 166:53CrossRefGoogle Scholar
  19. 19.
    Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410CrossRefGoogle Scholar
  20. 20.
    Randriamahazaka H, Asaka K (2010) Electromechanical analysis by means of complex capacitance of bucky-gel actuators based on single-walled carbon nanotubes and an ionic liquid. J Phys Chem C 114:17982CrossRefGoogle Scholar
  21. 21.
    Sugino T, Kiyohara K, Takeuchi I, Mukai K, Asaka K (2011) Improving the actuating response of carbon nanotube/ionic liquid composites by the addition of conductive nanoparticles. Carbon 49:3560CrossRefGoogle Scholar
  22. 22.
    Biso M, Ansaldo A, Futaba DN, Hata K, Ricci D (2011) Cross-linking super-growth carbon nanotubes to boost the performance of bucky gel actuators. Carbon 49:2253CrossRefGoogle Scholar
  23. 23.
    Singh E, Nalwa HS (2015) Graphene-based dye-sensitized solar cells: a review. Sci Adv Mater 9:1863CrossRefGoogle Scholar
  24. 24.
    Subramaniam K, Das A, Heinrich G (2011) Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos Sci Technol 71:1441CrossRefGoogle Scholar
  25. 25.
    Das A, Stöckelhuber KW, Jurk R, Fritzsche J, Klüppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47:3313CrossRefGoogle Scholar
  26. 26.
    Yu SC, Ju YS, Song CE, Lee SG (2008) Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem Commun 8:942Google Scholar
  27. 27.
    Wu B, Hu D, Yu Y, Kuang Y, Zhang X, Chen J (2010) Stabilization of platinum nanoparticles dispersed on carbon nanotubes by ionic liquid polymer. Chem Commun 46:7954CrossRefGoogle Scholar
  28. 28.
    Wang Z, Zhang Q, Dan K, Xu X, Ivaska A, Niu L (2008) The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis. Carbon 46:1687CrossRefGoogle Scholar
  29. 29.
    Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604CrossRefGoogle Scholar
  30. 30.
    Qu J, Bansal DG, Bo Y, Howe JY, Luo H, Sheng D, Li H, Blau PJ, Bunting BG, Mordukhovich G (2012) Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl Mater Interfaces 4:997CrossRefGoogle Scholar
  31. 31.
    Bermúdez MD, Carrión FJ, Espejo C, Martínez-López E, Sanes J (2011) Abrasive wear under multiscratching of polystyrene plus single-walled carbon nanotube nanocomposites. Effect of sliding direction and modification by ionic liquid. Appl Surf Sci 257:9073CrossRefGoogle Scholar
  32. 32.
    Wang B, Wang X, Lou W, Hao J (2010) Rheological and tribological properties of ionic liquid-based nanofluids containing functionalized multi-walled carbon nanotubes. J Phys Chem C 114:8749CrossRefGoogle Scholar
  33. 33.
    Bellayer S, Gilman JW, Eidelman N, Bourbigot S, Flambard X, Fox DM, De Long HC, Trulove PC (2005) Preparation of homogeneously dispersed multiwalled carbon nanotube/polystyrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizer. Adv Funct Mater 15:910CrossRefGoogle Scholar
  34. 34.
    Tung TT, Kim TY, Suh KS (2011) Nanocomposites of single-walled carbon nanotubes and poly(3,4-ethylenedioxythiophene) for transparent and conductive film. Org Electron 12:22CrossRefGoogle Scholar
  35. 35.
    Guan J, Xing C, Wang Y, Li Y, Li J (2016) Poly(vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos Sci Technol 138:98CrossRefGoogle Scholar
  36. 36.
    Xing C, Wang Y, Huang X, Li Y, Li J (2016) Poly(vinylidene fluoride) nanocomposites with simultaneous organic nanodomains and inorganic nanoparticles. Macromolecules 49:1026CrossRefGoogle Scholar
  37. 37.
    Wang Y, Xing C, Guan J, Li Y (2017) Towards flexible dielectric materials with high dielectric constant and low loss: PVDF nanocomposites with both homogenously dispersed CNTs and ionic liquids nanodomains. Polymers 9:562CrossRefGoogle Scholar
  38. 38.
    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468CrossRefGoogle Scholar
  39. 39.
    Todd MG, Shi FG (2003) Characterizing the interphase dielectric constant of polymer composite materials: effect of chemical coupling agents. J Appl Phys 94:4551CrossRefGoogle Scholar
  40. 40.
    Todd MG, Shi FG (2003) Molecular basis of the interphase dielectric properties of microelectronic and optoelectronic packaging materials. IEEE Trans Compon Packag Technol 26:667CrossRefGoogle Scholar
  41. 41.
    Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12:669CrossRefGoogle Scholar
  42. 42.
    Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites: a small part of the story. JOM 59:53CrossRefGoogle Scholar
  43. 43.
    Lewis T (1994) Nanometric dielectrics. IEEE Trans Dielectr Electr Insul 1:812CrossRefGoogle Scholar
  44. 44.
    Lewis T (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 11:739CrossRefGoogle Scholar
  45. 45.
    Lewis T (2005) Interfaces: nanometric dielectrics. J Phys D Appl Phys 38:202CrossRefGoogle Scholar
  46. 46.
    Das A, Pisana S, Chakraborty B, Piscanec S, Saha S, Waghmare U, Novoselov K, Krishnamurthy H, Geim A, Ferrari A (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210CrossRefGoogle Scholar
  47. 47.
    Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, Wang Z (2010) Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 51:730CrossRefGoogle Scholar
  48. 48.
    Manfredi E, Meyer F, Verge P, Raquez J-M, Thomassin J-M, Alexandre M, Dervaux B, DuPrez F, Van Der Voort P, Jérôme C (2011) Supramolecular design of high-performance poly (l-lactide)/carbon nanotube nanocomposites: from melt-processing to rheological, morphological and electrical properties. J Mater Chem 21:16190CrossRefGoogle Scholar
  49. 49.
    Jeon J-H, Lim J-H, Kim K-M (2009) Fabrication of hybrid nanocomposites with polystyrene and multiwalled carbon nanotubes with well-defined polystyrene via multiple atom transfer radical polymerization. Polymer 50:4488CrossRefGoogle Scholar
  50. 50.
    Fu Y, Liu L, Zhang J (2014) Manipulating dispersion and distribution of graphene in PLA through novel interface engineering for improved conductive properties. ACS Appl Mater Interfaces 6:14069CrossRefGoogle Scholar
  51. 51.
    Xu Z, Zhang Y, Wang Z, Sun N, Li H (2011) Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly (ε-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes. ACS Appl Mater Interfaces 3:4858CrossRefGoogle Scholar
  52. 52.
    Wu C, Huang X, Wu X, Xie L, Yang K, Jiang P (2013) Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5:3847CrossRefGoogle Scholar
  53. 53.
    Kułek J, Pawlaczyk C, Markiewicz E (2002) Influence of poling and ageing on high-frequency dielectric and piezoelectric response of PVDF-type polymer foils. J Electrostat 56:135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of EducationBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.College of Material Science and EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations