Advertisement

Journal of Materials Science

, Volume 54, Issue 7, pp 5561–5569 | Cite as

Ab initio atomistic thermodynamical study of oxygen desorption and nitrogen adsorption on \(\hbox {Ti}_2\hbox {O}_3\) surfaces

  • Mun-Hyok RiEmail author
  • Un-Son Ri
  • Kyong-Il Kim
  • Yun-Sop Sin
Computation and theory
  • 16 Downloads

Abstract

Five surfaces with low Miller indices, including (001), (011), (111), (01\(\bar{1}\)) and (11\(\bar{1}\)), were generated by cleaving rhombohedral \(\hbox {Ti}_2\hbox {O}_3\), and their surface energies were compared, which showed that (011) is cleaved more easily than others, followed by (001), (111), (01\(\bar{1}\)) and (11\(\bar{1}\)), so that we focused on (011), (001) and (111) surfaces. Phase diagram of stoichiometric, oxygen-deficient and nitrogen-substituted \(\hbox {Ti}_2\hbox {O}_3\) (001) surfaces indicated that oxygen evaporation does not take place on stoichiometric surface, and oxygen-to-nitrogen substitution is not a indirect (two-step) process (oxygen evaporation, followed by nitrogen substitution into oxygen vacancies). It was proved from minimum energy path (MEP) and DFT total energy curves over MEP that the energy barrier of direct oxygen-to-nitrogen substitution process is lower than indirect process, and therefore, direct process is easier to take place than indirect process.

Notes

Acknowledgements

The simulation has been carried out on the HP Blade System c7000 (HP BL460c) that is owned and managed by Faculty of Materials Science, Kim Il Sung University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Huang T, Mao S, Yu J, Wen Z, Lu G, Chen J (2013) RSC Adv 3:16657–16664CrossRefGoogle Scholar
  2. 2.
    Cong Y, Zhang J, Chen F, Anpo M (2007) J Phys Chem C 111:6976–6982CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C Photochem Rev 1:1–21CrossRefGoogle Scholar
  4. 4.
    Powell MJ, Dunnill CW, Parkin IP (2014) J Photochem Photobiol A Chem 281:27–34CrossRefGoogle Scholar
  5. 5.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271CrossRefGoogle Scholar
  6. 6.
    Sathish M, Viswanathan B, Viswanath R, Gopinath CS (2005) Chem Mater 17:6349–6353CrossRefGoogle Scholar
  7. 7.
    Burda C, Lou Y, Chen X, Samia AC, Stout J, Gole JL (2003) Nano Lett 3:1049–1051CrossRefGoogle Scholar
  8. 8.
    Irie H, Watanabe Y, Hashimoto K (2003) Chem Lett 32:772–773CrossRefGoogle Scholar
  9. 9.
    In S, Orlov A, Berg R, Garcia F, Pedrosa Jimenez S et al (2007) J Am Chem Soc 129:13790–13791CrossRefGoogle Scholar
  10. 10.
    Umebayashi T, Yamaki T, Itoh H, Asahi K (2002) Appl Phys Lett 81:454–456CrossRefGoogle Scholar
  11. 11.
    Yu JC, Zhang L, Zheng Z, Zhao J (2003) Chem Mater 15:2280–2286CrossRefGoogle Scholar
  12. 12.
    Yamaki T, Sumita T, Yamamoto S (2002) J Mater Sci Lett 21:33–35CrossRefGoogle Scholar
  13. 13.
    Luo H, Takata T, Lee Y, Zhao J, Domen K, Yan Y (2004) Chem Mater 16:846–849CrossRefGoogle Scholar
  14. 14.
    Li H, Hao Y, Lu H, Liang L, Wang Y et al (2015) Appl Surf Sci 344:112–118CrossRefGoogle Scholar
  15. 15.
    Yang G, Jiang Z, Shi H, Xiao T, Yan Z (2010) J Mater Chem 20:5301–5309CrossRefGoogle Scholar
  16. 16.
    Chen TL, Hirose Y, Hitosugi T, Hasegawa T (2008) J Phys D Appl Phys 41:062005CrossRefGoogle Scholar
  17. 17.
    Batzill M, Morales EH, Diebold U (2006) Phys Rev Lett 96:026103CrossRefGoogle Scholar
  18. 18.
    Rumaiz AK, Woicik JC, Cockayne E, Lin HY, Jaffari GH, Shah SI (2009) Appl Phys Lett 95:262111CrossRefGoogle Scholar
  19. 19.
    Tominaka Satoshi (2012) Facile synthesis of nanostructured reduced titanium oxides using borohydride toward the creation of oxide based fuel cell electrodes. Chem Commun 48:7949–7951CrossRefGoogle Scholar
  20. 20.
    Tominaka Satoshi (2012) Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors. Inorg Chem 51:10136–10140CrossRefGoogle Scholar
  21. 21.
    Tominaka Satoshi, Yoshikawa Hideki, Matsushita Yoshitaka (2014) Topotactic reduction of oxide nanomaterials: unique structure and electronic properties of reduced TiO\(_2\) nanoparticles. Mater Horiz 1:106–110CrossRefGoogle Scholar
  22. 22.
    Ovsyannikov SV, Wu X, Karkin AE, Shchennikov VV, M G (2012) Phys Rev B 86:024106CrossRefGoogle Scholar
  23. 23.
    Godin TJ, LaFemina JP (1994) Phys Rev B 49:7691–7696CrossRefGoogle Scholar
  24. 24.
    Regonini D, Dent ACE, Bowen CR, Pennock SR, Taylor J (2011) Mater Lett 65:3590–3592CrossRefGoogle Scholar
  25. 25.
    Regonini D, Adamaki V, Bowen CR, Pennock SR, Taylor J, Dent ACE (2012) Solid State Ion 229:38–44CrossRefGoogle Scholar
  26. 26.
    Qian GX, Martin R, Chadi DJ (1988) Phys Rev B 38:7649–7663CrossRefGoogle Scholar
  27. 27.
    Reuter K, Scheffler M (2002) Phys Rev B 65:035406CrossRefGoogle Scholar
  28. 28.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The siesta method for ab initio order-n materials simulation. J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  29. 29.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  30. 30.
    Ceperley D, Alder B (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRefGoogle Scholar
  31. 31.
    Rice CE, Robinson WR (1977) Acta Crystallogr B 33:1342–1348CrossRefGoogle Scholar
  32. 32.
    Chase J (1998) NIST-JANAF thermodynamical tables, 4th edn. American Chemical Society, Washington DCGoogle Scholar
  33. 33.
    Zhang J, Li MJ, Feng JC, Chen J, Li C (2006) J Phys Chem B 110:927–935CrossRefGoogle Scholar
  34. 34.
    Mitsuhashi T, Kleppa OJ (1979) J Am Ceram Soc 62:356–357CrossRefGoogle Scholar
  35. 35.
    Sahoo Sanjubala, Pamir Alpay S, Hebert Rainer J (2018) Surface phase diagrams of titanium in oxygen, nitrogen and hydrogen environment: a first principles analysis. Surf Sci 677:18–25CrossRefGoogle Scholar
  36. 36.
    Henkelman G, Jonsson H (2000) Improved tangent estimate in the NEB method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985CrossRefGoogle Scholar
  37. 37.
    Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4(3):56–66CrossRefGoogle Scholar
  38. 38.
    Staroverov et al (2003) J Chem Phys 119:12129–12137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nano TechnologyKim Il Sung UniversityRyongnam Dong, PyongyangDemocratic People’s Republic of Korea
  2. 2.Faculty of PhysicsKim Il Sung UniversityRyongnam DongDemocratic People’s Republic of Korea

Personalised recommendations