Journal of Materials Science

, Volume 54, Issue 7, pp 5671–5681 | Cite as

An investigation on strength distribution, subcritical crack growth and lifetime of the lithium-ion conductor Li7La3Zr2O12

  • Gang YanEmail author
  • Juliane Franciele Nonemacher
  • Hao Zheng
  • Martin Finsterbusch
  • Jürgen Malzbender
  • Manja Krüger
Energy materials


Due to the good chemical stability regarding lithium and cathode materials under high voltage, Li7La3Zr2O12 (LLZO) is considered as a promising electrolyte in all-solid-state Li-ion batteries. However, to enable stable long-term operation, knowledge of the mechanical boundary conditions is required. Since mechanical properties of the components and cells depend on the microstructure, the micro- and macro-mechanical properties of LLZO were investigated systemically via indentation tests and ring-on-ring bending (ROR) tests. Hence, fracture stress, elastic modulus, hardness and indentation fracture toughness of the material were characterized under different applied loads. Additionally, room-temperature subcritical crack growth effects were studied on the basis of loading rate-dependent ROR test derived data in order to assess potential reliability issues of LLZO components under application-relevant conditions. A strength–probability–lifetime plot is derived on the basis of these fracture stress data. Complementary optical and electron microscopic investigations were carried out. The Weibull modulus of LLZO is 6, and the stress should not exceed 21 MPa for a lifetime of 3 years to warrant a failure probability of 1%.



Support was given by China Scholarship Council (CSC) of China and National Council for Scientific and Technological Development (CNPq) of Brazil. Hao Zheng thanks the financial support from OCPC (Office of China Postdoc Council). The authors would like to acknowledge Ms. T. Osipova, Dr. Y. Zou and Mr. R. Silva for their support in mechanical testing and for obtaining confocal images. The authors gratefully acknowledge Dr. E. Wessel, Dr. D. Grüner and Mr. M. Ziegner for structural characterization and Prof. L. Singheiser for his support.


  1. 1.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  2. 2.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  3. 3.
    Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603CrossRefGoogle Scholar
  4. 4.
    Matsui M, Takahashi K, Sakamoto K, Hirano A, Takeda Y, Yamamoto O, Imanishi N (2014) Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12. Dalton Trans 43(3):1019–1024CrossRefGoogle Scholar
  5. 5.
    Aguesse F, Manalastas W, Buannic L, Lopez del Amo JM, Singh G, Llordés A, Kilner J (2017) Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl Mater Interface 9(4):3808–3816CrossRefGoogle Scholar
  6. 6.
    Yu S, Schmidt RD, Garcia-Mendez R, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ (2015) Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 28(1):197–206CrossRefGoogle Scholar
  7. 7.
    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781CrossRefGoogle Scholar
  8. 8.
    Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341CrossRefGoogle Scholar
  9. 9.
    Balakrishnan P, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155(2):401–414CrossRefGoogle Scholar
  10. 10.
    Hu X, Cheng X, Qin S, Yan G, Malzbender J, Qiang W, Huang B (2017) Mechanical and electrochemical properties of cubic and tetragonal LixLa0.557TiO3 perovskite oxide electrolytes. Ceram Int 44:1902–1908CrossRefGoogle Scholar
  11. 11.
    Wang Y, Li J, Huang L, Jing Y, Georgakopoulos A, Demestichas P (2014) 5G mobile: spectrum broadening to higher-frequency bands to support high data rates. IEEE Veh Technol Mag 9(3):39–46CrossRefGoogle Scholar
  12. 12.
    El Shinawi H, Janek J (2013) Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sources 225:13–19CrossRefGoogle Scholar
  13. 13.
    Bernstein N, Johannes M, Hoang K (2012) Origin of the structural phase transition in Li7La3Zr2O12. Phys Rev Lett 109(20):205702CrossRefGoogle Scholar
  14. 14.
    Kuhn A, Choi J-Y, Robben L, Tietz F, Wilkening M, Heitjans P (2012) Li ion dynamics in Al-doped garnet-type Li7La3Zr2O12 crystallizing with cubic symmetry. Z Phys Chem 226(5–6):525–537CrossRefGoogle Scholar
  15. 15.
    Nonemacher JF, Hüter C, Zheng H, Malzbender J, Krüger M, Spatschek R, Finsterbusch M (2018) Microstructure and properties investigation of garnet structured Li7La3Zr2O12 as electrolyte for all-solid-state batteries. Solid State Ionics 321:126–134CrossRefGoogle Scholar
  16. 16.
    Wang Y, Lai W (2012) High ionic conductivity lithium garnet oxides of Li7−xLa3Zr2−xTaxO12 compositions. Electrochem Solid-State Lett 15(5):A68–A71CrossRefGoogle Scholar
  17. 17.
    Tsai C-L, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O (2016) Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 8(16):10617–10626CrossRefGoogle Scholar
  18. 18.
    Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404CrossRefGoogle Scholar
  19. 19.
    Zhang X-W, Li Y, Khan SA, Fedkiw PS (2004) Inhibition of lithium dendrites by fumed silica-based composite electrolytes. J Electrochem Soc 151(8):A1257–A1263CrossRefGoogle Scholar
  20. 20.
    Baranowski LL, Heveran CM, Ferguson VL, Stoldt CR (2016) Multi-Scale Mechanical Behavior of the Li3PS4 Solid-Phase Electrolyte. Acs Appl Mater Inter 8(43):29573–29579CrossRefGoogle Scholar
  21. 21.
    Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM (2017) Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater 7(20):1701003CrossRefGoogle Scholar
  22. 22.
    Raj R, Wolfenstine J (2017) Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J Power Sources 343:119–126CrossRefGoogle Scholar
  23. 23.
    Wolfenstine J, Allen JL, Sakamoto J, Siegel DJ, Choe H (2017) Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 24:1–6Google Scholar
  24. 24.
    Ni JE, Case ED, Sakamoto JS, Rangasamy E, Wolfenstine JB (2012) Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci 47(23):7978–7985. CrossRefGoogle Scholar
  25. 25.
    Kim Y, Jo H, Allen JL, Choe H, Wolfenstine J, Sakamoto J (2016) The effect of relative density on the mechanical properties of hot-pressed cubic Li7La3Zr2O12. J Am Ceram Soc 99(4):1367–1374CrossRefGoogle Scholar
  26. 26.
    Sharafi A, Haslam CG, Kerns RD, Wolfenstine J, Sakamoto J (2017) Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J Mater Chem A 5(40):21491–21504CrossRefGoogle Scholar
  27. 27.
    Deng Z, Wang Z, Chu I-H, Luo J, Ong SP (2016) Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J Electrochem Soc 163(2):A67–A74CrossRefGoogle Scholar
  28. 28.
    Wang A-N, Nonemacher JF, Yan G, Finsterbusch M, Malzbender J, Krüger M (2018) Mechanical properties of the solid electrolyte Al-substituted Li7La3Zr2O12 (LLZO) by utilizing micro-pillar indentation splitting test. J Eur Ceram Soc 38:3201–3209CrossRefGoogle Scholar
  29. 29.
    Wolfenstine J, Jo H, Cho Y-H, David IN, Askeland P, Case ED, Kim H, Choe H, Sakamoto J (2013) A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ionconductors. Mater Lett 96:117–120CrossRefGoogle Scholar
  30. 30.
    Le J-L, Bažant ZP, Bazant MZ (2009) Subcritical crack growth law and its consequences for lifetime statistics and size effect of quasibrittle structures. J Phys D Appl Phys 42(21):214008CrossRefGoogle Scholar
  31. 31.
    Davidge R, McLaren J, Tappin G (1973) Strength-probability-time (SPT) relationships in ceramics. J Mater Sci 8(12):1699–1705. CrossRefGoogle Scholar
  32. 32.
    Anderson OL, Grew PC (1977) Stress corrosion theory of crack propagation with applications to geophysics. Rev Geophys 15(1):77–104CrossRefGoogle Scholar
  33. 33.
    Teixeira EC, Piascik JR, Stoner BR, Thompson JY (2007) Dynamic fatigue and strength characterization of three ceramic materials. J Mater Sci: Mater Med 18(6):1219–1224Google Scholar
  34. 34.
    Nagabhushana N, Nithyanantham T, Bandopadhyay S, Zhang J (2011) Subcritical crack growth behavior of a perovskite-type oxygen transport ceramic membrane. Int J Appl Ceram Technol 8(2):390–397CrossRefGoogle Scholar
  35. 35.
    Silva RO, Malzbender J, Schulze-Küppers F, Baumann S, Guillon O (2017) Mechanical properties and lifetime predictions of dense SrTi1−xFexO3−δ (x = 0.25, 0.35, 0.5). J Eur Ceram Soc 37(7):2629–2636CrossRefGoogle Scholar
  36. 36.
    Malzbender J, de With G (2001) The use of the indentation loading curve to detect fracture of coatings. Surf Coat Technol 137(1):72–76CrossRefGoogle Scholar
  37. 37.
    Malzbender J, de With G (2001) The use of the loading curve to assess soft coatings. Surf Coat Technol 127(2–3): 265–272Google Scholar
  38. 38.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. CrossRefGoogle Scholar
  39. 39.
    Sergejev F, Antonov M (2006) Comparative study on indentation fracture toughness measurements of cemented carbides. Proc Estonian Acad Sci Eng 12(4):388–398Google Scholar
  40. 40.
    Carter CB, Norton MG (2007) Ceramic materials: science and engineering. Springer, BerlinGoogle Scholar
  41. 41.
    Evans AG, Charles EA (1976) Fracture toughness determinations by indentation. J Am Ceram Soc 59(7–8):371–372CrossRefGoogle Scholar
  42. 42.
    Lawn BR, Fuller E (1975) Equilibrium penny-like cracks in indentation fracture. J Mater Sci 10(12):2016–2024. CrossRefGoogle Scholar
  43. 43.
    Anstis G, Chantikul P, Lawn BR, Marshall D (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64(9):533–538CrossRefGoogle Scholar
  44. 44.
    ASTM C (2007) 1239-07: Standard practice for reporting uniaxial strength data and estimating Weibull distribution parameters for advanced ceramics. ASTM International, West ConshohockenGoogle Scholar
  45. 45.
    Pećanac G, Foghmoes S, Lipińska-Chwałek M, Baumann S, Beck T, Malzbender J (2013) Strength degradation and failure limits of dense and porous ceramic membrane materials. J Eur Ceram Soc 33(13–14):2689–2698CrossRefGoogle Scholar
  46. 46.
    Standard A (2005) C1499-05, Standard test method for monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature. ASTM International, West ConshohockenGoogle Scholar
  47. 47.
    Choi SR, Salem JA, Holland FA (1997) Estimation of slow crack growth parameters for constant stress-rate test data of advanced ceramics and glass by the individual data and arithmetic mean methods. Nasa Technical Memorandum, 107369Google Scholar
  48. 48.
    Barsoum M, Barsoum M (2002) Fundamentals of ceramics. CRC Press, Boca RatonCrossRefGoogle Scholar
  49. 49.
    Tsai C-L, Dashjav E, Hammer E-M, Finsterbusch M, Tietz F, Uhlenbruck S, Buchkremer HP (2015) High conductivity of mixed phase Al-substituted Li7La3Zr2O12. J Electroceram 35(1–4):25–32CrossRefGoogle Scholar
  50. 50.
    Lawn BR, Jakus K, Gonzalez AC (1985) Sharp vs blunt crack hypotheses in the strength of glass: a critical study using indentation flaws. J Am Ceram Soc 68(1):25–34CrossRefGoogle Scholar
  51. 51.
    Gong J, Wu J, Guan Z (1999) Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. J Eur Ceram Soc 19(15):2625–2631CrossRefGoogle Scholar
  52. 52.
    Chiang Y-M, Birnie DP, Kingery WD, Newcomb S (1997) Physical ceramics: principles for ceramic science and engineering, vol 409. Wiley, New YorkGoogle Scholar
  53. 53.
    Jakus K, Coyne D, Ritter J (1978) Analysis of fatigue data for lifetime predictions for ceramic materials. J Mater Sci 13(10):2071–2080. CrossRefGoogle Scholar
  54. 54.
    Wang CH (1996) Introduction to fracture mechanics. DSTO Aeronautical and Maritime Research Laboratory Melbourne, MelbourneGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Energy and Climate Research (IEK)Forschungszentrum Jülich GmbHJülichGermany
  2. 2.School of Material Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations